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Abstract

Many datasets use experts to code latent quantities of interest. However, scholars have
not explored either the factors affecting expert reliability or the degree to which these
factors influence estimates of latent concepts. Here we systematically analyze potential
correlates of expert reliability using six randomly selected variables from a cross-national
panel dataset, V–Dem v8. The V–Dem project includes a diverse group of over 3,000
experts and uses an IRT model to incorporate variation in both expert reliability and
scale perception into its data aggregation process. In the process, the IRT model produces
an estimate of expert reliability, which affects the relative contribution of an expert to
the model. We examine a variety of factors that could correlate with reliability, and find
little evidence of theoretically-untenable bias due to expert characteristics. On the other
hand, there is evidence that attentive and confident experts who have a basic contextual
knowledge of the concept of democracy are more reliable.



Many important datasets use experts to code values that are difficult to directly

estimate. Weighting estimates of these latent concepts with a measure of relative coder

expertise—often proxied by reliability—is of clear importance (Pemstein, Meserve and

Melton, 2010). However, the factors that influence expert reliability remain unexplored,

as do their implications for model design.

Here we analyze potential correlates of expert reliability in the context of a cross-

national expert survey of political concepts. This exploratory analysis provides insight

into the degree to which a method—a modified Item Response Theory (IRT) model—

provides substantively unbiased estimates of latent concepts using expert-coded data.

The analysis also offers evidence regarding characteristics that make some experts more

reliable than others, awareness of which will assist future expert-coding endeavors.

We investigate reliability using data from the Varieties of Democracy (V–Dem) Dataset

(Coppedge, Gerring, Knutsen, Lindberg, Skaaning, Teorell, Altman, Bernhard, Fish,

Cornell, Dahlum, Gjerlow, Glynn, Hicken, Krusell, Lührmann, Marquardt, McMann,

Mechkova, Medzihorsky, Olin, Paxton, Pemstein, Pernes, von Römer, Seim, Sigman,

Staton, Stepanova, Sundstöm, Tzelgov, Wang, Wig, Wilson and Ziblatt, 2018). The V–

Dem dataset is an ideal laboratory for these analyses because the project utilizes a diverse

body of over 3,000 experts to code over 121 ordinal variables covering a variety of regime

traits; these variables cover almost all states and many colonies from 1900-2017, as well

as a more limited set of variables for 91 cases from 1789-1900 (Coppedge, Gerring, Lind-

berg, Skaaning, Teorell, Krusell, Marquardt, Medzihorsky, Pemstein, Pernes, Stepanova,

Tzelgov, Wang and Wilson, 2018). This variation over cases, concepts and time—as well

as differences in both expert demographics and coding characteristics—provides ample

data for analyzing the characteristics that could affect expert reliability in a variety of

contexts.

We measure reliability using data from six randomly-selected expert-coded variables.

As a measure of reliability we use the expert-specific discrimination parameters from an

IRT model which aggregates these data. These parameters represent the degree to which

an expert diverges from other experts who code the same cases. This operaionalization

aligns with classic definitions of reliability (Carmines and Zeller, 1979), as well as recent

empirical work examining convergence among workers on crowd-sourcing platforms when

coding the same cases (Benoit et al., 2016; Marquardt et al., 2017). As potential correlates

of reliability, we use both demographic data from a post-survey questionnaire and the

coding characteristics of experts.

In general, the correlates of reliability vary across variables. Most of these null findings

regard variables that could constitute potentially problematic sources of bias in the the

estimation procedure, such as gender. The exceptions to the null results are intuitive: 1)

more confident experts tend to be more reliable than less confident experts; 2) experts

who vary their codings tend to be more reliable than experts who vary less; and 3)
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experts who evince general knowledge of a concept integral to the coding enterprise tend

to be more reliable. Cumulatively, these findings reinforce the argument that IRT models

that account for variation in expert reliability and scale perception are a safe method for

aggregating expert-coded data (Marquardt and Pemstein, In press).

1 Reliability in the V–Dem model

We use the V–Dem measurement model (Pemstein et al., 2018) as a baseline to estimate

expert reliability. Previous research illustrates that this model generally outperforms

other standard methods for aggregating expert-coded data in terms of recovering latent

trait estimates (Marquardt and Pemstein, In press). However, the degree to which it is

subject to other forms of bias remains unexplored.

The model closely resembles a standard Bayesian ordinal IRT model (Johnson and

Albert, 1999), with a partial likelihood taking the form of Equation 1.

Pr(yctr = k) = φ (γr,k − βrzct)− φ (γr,k−1 − βrzct) . (1)

Here, φ is the cumulative distribution function of a normal distribution, yctr is the or-

dinal response of expert r for country-year ct and zct is the latent concept being estimated

for country-year ct. We follow standard convention and a priori assume zct ∼ N (0, 1).

In this paper we focus on β, the reliability parameter unique to each expert r. In

IRT terminology, β is a “discrimination” parameter: βr = 1
σr

, where σr represents each

expert’s stochastic error variance.1 We model βr ∼ N (1, 1) a priori, restricted to positive

values. This truncation is necessary for identification purposes, and rests on the relatively

safe assumption that experts code in the right direction.

Note that the model also accounts for systematic biases in how experts translate

perceptions into ratings—a common concern in surveys that rely on multi-rater judgment

(Aldrich and McKelvey, 1977; Bakker et al., 2014; Hare et al., 2015)—through γ, a

k = 1, ..., n vector of threshold parameters specific to each expert. As a result, β estimates

the degree to which experts stochastically diverge from other experts who coded the same

cases, conditional on her scale perception. Higher scores indicate that the expert diverges

less from other experts than experts with lower scores, which we interpret as proxying

her reliability in the more colloquial sense.2

1See Pemstein et al. (2018) for a derivation of this relationship. Appendix A provides more details
on the modeling strategy.

2Reliability is not necessarily the same as accuracy (Maestas, Buttice and Stone, 2014). However,
assessing accuracy directly is an impossible task in this dataset, given that there is no concrete reference
point for coding accuracy of latent variables.
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2 Benefits of analyzing reliability correlates

A primary benefit of analyzing reliability correlates is that doing so provides a useful

diagnostic of the measurement method. In this modified IRT model, experts with lower

reliability scores contribute less to the estimation of country-year latent traits, the pa-

rameters of interest in most applications. Incorrect measurement of reliability could thus

lead to inaccurate latent trait estimates.

In principle, the stringent recruitment criteria of the V–Dem project means that all

experts should be exchangeable in their expertise. In practice, there are many ways in

which the IRT approach to modeling reliability could go awry, systematically penalizing

colloquially “reliable” experts. A key example is gender. A majority of V–Dem experts

are men. If women systematically perceive a latent trait differently than men, minority

status could lead women to receive lower reliability scores even though their viewpoint is

equally valid. Such a result would indicate that there is theoretically untenable bias in

the measurement process.

A second benefit of analyzing the correlates of reliability is that it provides tentative

evidence regarding the correlates of more reliable experts. This evidence may facilitate

decisions regarding expert recruitment and retention in future projects. While previous

research illustrates that experts provide better coding in the context of cross-national

panel data regarding latent concepts than do laypersons (Marquardt et al., 2017), poten-

tial correlates of intra-expert variation in this context remain unexplored.

3 Variables and descriptive statistics

3.1 Reliability

We analyze reliability (β) scores from six of the 121 expert-coded ordinal V–Dem variables

over all expert-country-year observations. While the limited number of variables means

that our analyses are not exhaustive, the diversity of variables coded militates against

finding trends across them: consistent trends are thus likely a function of a consistent

relationship between reliability and certain correlates.

We randomly selected all six variables, five from the universe of variables and one

from the set of gender-specific variables.3 The five fully randomly-selected variables

(codebook identifier in bold) are: 1) Executive oversight by bodies other than the legisla-

ture (v2lgotovst), 2) opposition Party autonomy (v2psoppaut) from the ruling regime,

3For additional details on the variables, see the V–Dem Codebook (Coppedge, Gerring, Knutsen, Lind-
berg, Skaaning, Teorell, Altman, Bernhard, Cornell, Fish, Gjerlow, Glynn, Hicken, Krusell, Lührmann,
Marquardt, McMann, Mechkova, Olin, Paxton, Pemstein, Seim, Sigman, Staton, Tzelgov, Uberti, Wang,
Wig and Ziblatt, 2018). All variables are based on five-point Likert scale questions, with the exception
of domestic autonomy and reasoned justification, which have three and four points, respectively.
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3) the degree to which officials offer Reasoned justification (v2dlreason) for their deci-

sions, 4) the degree to which a government has Domestic autonomy (v2svdomaut)

from other states, and 5) the degree to which a state engages in Journalist harassment

(v2meharjrn).

We also randomly selected one variable from the universe of gender-specific variables:

Female freedom of discussion (v2cldiscw). This variable represents a most likely case

where we would expect theoretically-untenable systematic differences in reliability with

regard to gender.

We use Markov chain Monte Carlo (MCMC) methods to estimate the IRT model for

each of the variables included in the analysis.4 MCMC methods generate samples from

the posterior distributions of model parameters; we use the full posterior of reliability

estimates across iterations of the MCMC algorithm to account for measurement error.

3.2 Correlates of reliability

We discuss potential sets of reliability correlates in turn. All coding characteristic vari-

ables regard expert behavior in coding the variable for which reliability is being analyzed;

variables regarding self-reported confidence and coding variation use reduced data.5 Ap-

pendix B presents descriptive statistics.

3.2.1 Demographics

Gender may influence reliability for the theoretically-untenable reasons previously dis-

cussed; we therefore include the dichotomous indicator Female. We also control for edu-

cational background and employment, which have a more theoretical tenable connection

to reliability. Previous research demonstrates that experts with different academic and

professional backgrounds can have different knowledge and thus vary in their perception

of aspects of latent traits (Cumming, 1990; Michael et al., 1980; Royal-Dawson and Baird,

2009). Similarly, raters with higher levels of expertise are more reliable when rating com-

plex or broad tasks (Schoonen, Vergeer and Eiting, 2016). A majority of V-Dem experts

hold a PhD and/or work at a university, both of which potentially indicate expertise and

thus greater reliability.

4We conduct all analyses using the statistical software Stan (Stan Development Team, 2015). We ran
eight chains with 10,000 iterations (burn-in of 1,000 iterations and thinning interval of 20), quintupling
the iterations, burn-in and thinning interval if the initial run did not converge. We assess convergence
using the Gelman diagnostic, considering reliability scores to have reached convergence if less than 10
percent of reliability scores have values below 1.1.

5When running models we reduce the data to regimes—country-year observations where at least
one expert changes her coding or self-reported confidence—to prevent inaccurately low estimates of
uncertainty (Pemstein et al., 2018). We analyze coding variation at the reduced level because these cases
are those in which at least one expert has changed her codings, indicating a potential change in the
latent trait value.
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We trichotomize education: the reference level is individuals with a PhD, while Pro-

fessional degree indicates that the expert holds a degree such as an MBA or JD, while MA

or lower is self-explanatory. We analyze employment with a set of four indicators: em-

ployees of a Public university (the reference level), Private university, the Government

(non-university government employment, including employees of regional governments

and state-owned enterprises), and Other (non-governmental non-academic employment).

We disaggregate public and private employment because experts in the private sector

may be more reliable, since they are potentially less susceptible to government pressure

or other incentives to provide biased estimates.

Finally, we include the natural logarithm of a respondent’s Age as a standard con-

trol. Similarly, we include an indicator for Historical coders, or those coders who coded

pre-1900 data. These coders diverge from others in that they are generally the sole

coder for pre-1900 data, which could affect their reliability for mechanical—as opposed

to substantive—reasons.

3.2.2 Democracy in residence country

Experts living in democratic countries may not be concerned by potential government

sanction, and may have better access to information. Both of these factors may increase

their reliability. Democracy represents the average level of democracy from 2008 to 2017

for experts’ residence country, measuring democracy with the V–Dem electoral democracy

index (v2x polyarchy).

3.2.3 Knowledge

We proxy case knowledge with an indicator for experts who are Not resident of the country

they are coding. We also measure both conceptual awareness and general knowledge. The

indicator Low awareness represents experts who reported in a post-survey questionnaire

that they do not consider electoral democracy important to the concept of democracy.

Since electoral democracy underpins most definitions of democracy, experts who are not

aware of this connection may be less reliable. The indicator Low knowledge represents

experts who either consider 1) Sweden to be non-democratic or 2) North Korea to be

democratic.6 Since Sweden consistently ranks among the most democratic countries in

the world and North Korea among the least, an expert who miscodes either case betrays

a lack of understanding of the concept of democracy or extremely limited understanding

of the worldwide context. Such an expert may be less reliable.

6Experts rank 12 countries on a 0-100 scale, with high scores representing more democracy. We
consider a score on either side of 50 to represent democracy vs. non-democracy.
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3.2.4 Confidence

Experts self-report their case-level Confidence on a 0-1 scale, which we aggregate to an

expert’s average over a given variable. We expect more confident experts to be more

reliable.

3.2.5 Attentiveness

More attentive experts may be more reliable. We measure attentiveness with two sets of

indicators. First, most countries vary in political traits over time. After controlling for

country-coded effects, the degree to which an expert varies her scores may therefore proxy

her attentiveness. Second, since expertise likely varies over time and countries, attentive

experts should vary in self-reported confidence. We measure both variation in coding

and confidence with two indicators each. Coding and Confidence variation indicate if an

expert changed her scores on either metric at least once, while Coding and Confidence sd

measure an expert’s standard deviation on these metrics.

3.2.6 Volume

High coding volume may lead experts to overextend themselves and thus lower their reli-

ability. We measure coding volume along three dimensions. First, the natural logarithm

of the country-years an expert coded, Country-years. Second, the natural logarithm of

variables an expert coded, Variables. Third, though most experts coded only one coun-

try, many coded several. We include both Countries > 1, which indicates an expert who

coded more than one country and Unique countries, the natural logarithm of the unique

countries she coded.

4 Results

We conduct analyses of each variable’s reliability scores individually, regressing each

posterior draw of reliability parameters on the complete set of potential correlates.7 Given

that some countries and years may be more difficult to code than others, we include fixed

effects for the coded country and year in all analyses. 8

7Appendix D presents results from analyses that only analyze the relationship between the correlates
and the posterior median, which are in line with these analyses, albeit with much tighter estimates
of uncertainty since they do not incorporate posterior measurement error. Since approximately 50
percent of experts do not complete the post-survey questionnaire, we present replications of analyses
with only coding characteristics and an indicator for experts who did not complete the questionnaire in
Appendix C. The results are in line with those we present in the body of the text; experts who did not
complete the post-survey question tend to have similar reliability to those who did, conditional on their
coding characteristics. Finally, Appendix C also includes analyses of models that do not include coding
characteristics. Again, results are essentially in line with those in the main text.

8Models with only country and year fixed effects explain a fair amount of variance, with bootstrapped
posterior median r2 values ranging from 0.16 to 0.19.
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We first show coefficient plots, then discuss their substantive implications with the

predicted reliability of experts with different characteristics. Figure 1 presents coeffi-

cient estimates by variable, with points representing the bootstrapped median coefficient

estimate and horizontal lines the 90 percent highest bootstrapped density about this es-

timate. The vertical line aligns with effect magnitude of zero; we center the intercept at

zero for illustration purposes. We discuss results by expert characteristic type.

4.1 Demographics

The difference between female and male coders is generally low in magnitude and incon-

sistent across variables, indicating that the model does not erroneously penalize female

experts. Similarly, age and employment shows little correlation with reliability. Respon-

dents with a professional degree tend to have higher reliability than experts with a PhD

(the reference level) in four of the six variables with a relatively high magnitude, though

these estimates are based on a relatively small number of experts. Results regarding the

other education indicator—MA or lower education—are ambiguous and relatively small

in magnitude. Experts who code historical data tend to be less reliable than other ex-

perts in four of the five variables (there are no historical data for Reasoned justification)

though this result may be a relic of these experts generally being the sole coders of cases.

4.2 Democracy in residence country

Democracy shows little relationship with expert reliability in four of the six variables, and

a negative relationship in one variable (Reasoned justification) and a positive relationship

in the remaining variable (Female freedom).

4.3 Knowledge

Experts who betray a lack of general knowledge of democracy are less reliable than

other experts in four of the six variables, and slightly more reliable in the remaining

two. However, the magnitude of this relationship is generally small. The remaining

knowledge measures (Not resident and Low awareness) show little consistent relationship

with reliability.

4.4 Confidence

In five of the six variables self-reported confidence shows a positive correlation with

reliability; in the remaining variable there is little evidence of a relationship.
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Figure 1: Bootstrapped posterior coefficient estimates of correlates of reliability

Intercept

Female

Age

Government

Non−government

Private university

MA or lower

Professional degree

Not resident

Low knowledge

Low awareness

Democracy

Historical coder

Confidence

Confidence variation 

Confidence sd

Coding variation

Coding sd

Country years

Variables

Countries >1

Countries

−1 0 1
Executive oversight

−1.0 −0.5 0.0 0.5 1.0

Journalist harassment
−1 0 1

Party autonomy

Intercept

Female

Age

Government

Non−government

Private university

MA or lower

Professional degree

Not resident

Low knowledge

Low awareness

Democracy

Historical coder

Confidence

Confidence variation 

Confidence sd

Coding variation

Coding sd

Country years

Variables

Countries >1

Countries

−2 −1 0 1 2
Domestic autonomy

−1 0 1

Reasoned justification
−1 0 1

Female freedom

Intercept estimate centered at zero for illustration purposes. Models include country
and year fixed effects; reference level is an expert coding Germany and the year 2012.
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4.5 Attentiveness

Variation in coding shows the most consistent results in these analyses: in all variables,

experts who varied more in their coding tend to have higher reliability than their peers

who varied less. However, results regarding the difference between those experts who

did not vary their codings and their peers are inconsistent, which may be due to the

relative lack of variation in latent concept levels in some cases across variables. Variation

in self-reported confidence shows little correlation with expert reliability.

4.6 Volume

Neither the number of country-years an expert coded nor the number of variables she

coded shows a relationship with reliability in any variable. Results regarding the number

of unique countries an expert coded are inconsistent: in two variables they show little

correlation with reliability; in three, experts who coded more than two variables tend to

be slightly less reliable than those who only coded two; and in one variable, experts who

coded two or more countries tend to be more reliable than those who only coded one.

4.7 Predicted reliability

The coefficient plots illustrate that there is a high level of uncertainty in the intercept,

which indicates that coefficient plots may be misleading in their illustration of the sub-

stantive importance of the covariates. Figure 2 presents the predicted reliability of ex-

perts with different characteristics across variables. Points represent the the bootrapped

predicted median reliability for experts with given certain demographic or coding char-

acteristics, holding all other correlates constant at their mean or mode.9 The range

represents the posterior median range of reliability scores for a given variable.

As Figure 2 makes clear, once we incorporate overall posterior uncertainty into the

assessment of the relationship between the correlates of reliability and this outcome,

the substantive relationship is generally minimal. The main exceptions to this rule are

Confidence, Low knowledge, and Coding variation, which retain their relatively large

correlation with reliability. However, this estimation procedure likely underestimates

uncertainty; if we were to illustrate the results by using the method of composition the

relationship between these variables and reliability would likely further diminish.

9In the case of continuous correlates, we plot predicted values at their second and fourth quantile
(“low” and “high”); for those variables that include a dichotomous indicator (unique countries coded, and
variation in coding and confidence), we report both the relationship between the dichotomous indicator
of some variation (Two countries coded, No coding, and No confidence) and High and Low estimates
based on the quantiles of experts who show variation in either self-reported confidence or coding (most
experts who coded more than one country coded only two).
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Figure 2: Posterior bootstrapped predicted reliability of experts with different character-
istics

Reference
Female

Low age
High age

Government
Non−government
Private university

MA or lower
Professional degree

Not resident
Low knowledge
Low awareness
Low democracy
High democracy
Historical coder
Low confidence
High confidence
No confidence 

Low confidence 
High confidence 

No coding
Low coding
High coding

Few country years
Many country years

Few variables
Many variables

Two countries
Many countries

0 1 2 3 4
Executive oversight

0 1 2 3 4

Journalist harassment
0 1 2 3

Party autonomy

Reference
Female

Low age
High age

Government
Non−government
Private university

MA or lower
Professional degree

Not resident
Low knowledge
Low awareness
Low democracy
High democracy
Historical coder
Low confidence
High confidence
No confidence 

Low confidence 
High confidence 

No coding
Low coding
High coding

Few country years
Many country years

Few variables
Many variables

Two countries
Many countries

0 1 2 3
Domestic autonomy

0 1 2 3

Reasoned justification
0 1 2 3 4

Female freedom

Models include country and year fixed effects; reference level is an expert coding
Germany and the year 2012.
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5 Conclusion

The analyses in this paper represent a valuable first step in analyzing correlates of expert

reliability, using the diverse body of experts who code a variety of political traits cross-

nationally and cross-temporally for the V–Dem Project. Most potential correlates of

reliability show little substantively important correlation with the measure; in general,

these null results provide evidence that the IRT model we use in the estimation procedure

does not provide results that are biased for untenable reasons. The main exception to

this rule is coding variation: experts who vary their codings less than others tend to be

less reliable across variables, conditional on them changing their codings at least once.

This result indicates that more attentive experts tend to be more reliable.

Other results are more tentative. There is evidence that experts who show low general

conceptual knowledge are less reliable than others, and that those experts who are more

confident in their codings are more reliable. These results lead to the intuitive conclusion

that expert-coding enterprises should endeavor to recruit experts who have knowledge of

the concepts they are coding and believe they have knowledge on the concepts and cases.
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A Additional model details

The model assumes that experts imperfectly observe an interval-valued latent variable,

zct, when producing their ordinal ratings for each country year, yctr. These parameters

represent the concept that experts are asked to evaluate when answering a given survey

question. More reliable raters observe each zct with less error than less reliable raters. In

particular, each rater r perceives the latent trait for case ct such that

pctr = zct + ectr,where ectr ∼ N(0, σr). (A.1)

While the z parameters are the main quantity of interest of the V-Dem measurement

model, they are of secondary concern here.10 Second, to account for idiosyncratic in-

terpretation of the ordinal categories (differential item functioning, or DIF), the model

estimates unique thresholds (each γ) for each expert. These thresholds are cutoff points

on the underlying latent scale that determine how experts translate interval-level percep-

tions of the latent traits into ordinal ratings. If rater r perceives pct such that pct < γr,1,

she reports the lowest possible ordinal score for case ct (i.e yctr = 0); if she observes pct

such that γr,1 < pct < γr,2, she reports the second lowest ordinal score; and so on. There

is a large body of literature on the importance of accounting for variation in how experts

code latent concepts (Kozlowski and Hattrup, 1992): namely, experts may disagree about

question scales, though they are in agreement about the latent value. As a result, a model

that only estimates reliability without adjusting for systematic bias risks conflating bias

with a unreliability. For example, an expert who consistently ranks a concept one item

higher than other experts, but otherwise follows their trends in coding, is as reliable

as the other experts. Expert-specific thresholds ameliorate this concern by allowing for

inter-expert variation in how they map their understanding of latent concepts into ordinal

codes. They allow the model to adjust for a large class of systematic rater biases that

lead to inter-expert disagreement in coding. For example, some experts may have higher

standards than others, and threshold parameters account for this sort of systematic error.

We follow the standard V-Dem framework for estimating thresholds hierarchically

(Pemstein et al., 2018): each expert’s unique thresholds use the same prior as the thresh-

olds of similar experts (i.e., experts who were recruited to code the same country as

their main country). Equation A.2 provides a more precise description of this estimation

strategy.

10The standard V–Dem model uses a confidence-weighted empirical prior for zct to correct for sparse
data in some country years (Pemstein et al., 2018), we use a vague N (0, 1) prior. The use of this prior
has no bearing on estimates of rater reliability, which are purely a function of inter-rater agreement.
Thus, we avoid this complication here.
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γr,k ∼ N (γcrk , 0.2)

γck ∼ N (γµk , 0.2)

γµk ∼ U(−4, 4)

(A.2)

In Equation A.2, γµk represents the overall population threshold µ for category k; γck
the overall threshold for experts with a common main country-of-coding c, and γr,k the

expert-r specific threshold. For the purposes of this paper, this framework means that

the reliability scores we analyze are mainly a function of similar patterns in coding, as

opposed to DIF.

The hierarchical structure facilitates more precise estimation of latent concepts in two

ways. First, V–Dem encourages experts to code either another country for the entire time

series in addition to their main country (bridge coding), or multiple countries in a given

year (lateral coding) (Pemstein, Tzelgov and Wang, 2015). By hierarchically-clustering

thresholds about a main country coded, we are able to incorporate information regarding

the coding patterns of experts who coded more than one country into the thresholds of

experts who only coded one country.

Second, many experts do not code the entire scale (e.g., an expert who only codes

Freedom of discussion for women from 2012-2017 in Switzerland will likely never report

a scale item representing systematic prevention of political discussion). To accurately

estimate such an expert’s thresholds, we borrow strength from experts who code both

the same country as her, as well as countries with greater variation in this latent concept.

In other words, when we lack the information necessary to estimate a particular expert’s

threshold(s), we assume that she behaves like other, similar, raters.

B Descriptive statistics and regression table
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Figure B.1: Posterior median reliability distribution by expert
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Figure B.2: Posterior distribution of reliability for every fiftieth expert across variables
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C Results from additional analyses

Figure C.1: Demographic correlates of reliability
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Figure C.2: Coding correlates of reliability
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D Analysis of posterior medians

Figure D.1: Correlates of reliability

Reference
Female

Low age
High age

Government
Non−government
Private university

MA or lower
Professional degree

Not resident
Low knowledge
Low awareness
Low democracy
High democracy
Historical coder
Low confidence
High confidence
No confidence 

Low confidence 
High confidence 

No coding
Low coding
High coding

Few country years
Many country years

Few variables
Many variables

Two countries
Many countries

0 1 2 3 4
Executive oversight

0 1 2 3 4

Journalist harassment
0 1 2 3

Party autonomy

Reference
Female

Low age
High age

Government
Non−government
Private university

MA or lower
Professional degree

Not resident
Low knowledge
Low awareness
Low democracy
High democracy
Historical coder
Low confidence
High confidence
No confidence 

Low confidence 
High confidence 

No coding
Low coding
High coding

Few country years
Many country years

Few variables
Many variables

Two countries
Many countries

0 1 2 3
Domestic autonomy

0 1 2 3

Reasoned justification
0 1 2 3 4

Female freedom
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