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Abstract

Data sets quantifying phenomena of social-scientific interest often use multiple experts to
code latent concepts. While it remains standard practice to report the average score across
experts, experts likely vary in both their expertise and their interpretation of question scales.
As a result, the mean may be an inaccurate statistic. Item-response theory (IRT) models
provide an intuitive method for taking these forms of expert disagreement into account when
aggregating ordinal ratings produced by experts, but they have rarely been applied to cross-
national expert-coded panel data. In this article, we investigate the utility of IRT models
for aggregating expert-coded data by comparing the performance of various IRT models to
the standard practice of reporting average expert codes, using both real and simulated data.
Specifically, we use expert-coded cross-national panel data from the V–Dem data set to both
conduct real-data comparisons and inform ecologically-motivated simulation studies. We
find that IRT approaches outperform simple averages when experts vary in reliability and
exhibit di↵erential item functioning (DIF). IRT models are also generally robust even in the
absence of simulated DIF or varying expert reliability. Our findings suggest that producers
of cross-national data sets should adopt IRT techniques to aggregate expert-coded data of
latent concepts.



Expert surveys are a powerful tool for measuring latent political concepts, ranging from

the ideological positions of political parties (see e.g. Bakker, de Vries, Edwards, Hooghe,

Jolly, Marks, Polk, Rovny, Steenbergen & Vachudova 2012, Konig, Marbach & Osnabrugge

2013, Maestas, Buttice & Stone 2014) to bureaucratic organization or preferences (Clinton

& Lewis 2008, Teorell, Dahlstroem & Dahlberg 2011), election quality (Norris, Frank &

Mart́ınez I Coma 2013), and regime characteristics (Coppedge, Gerring, Lindberg, Teorell,

Pemstein, Tzelgov, Wang, Glynn, Altman, Bernhard, Fish, Hicken, McMann, Paxton, Reif,

Skaaning & Staton 2014). However, assigning values to latent traits is complicated and

experts exhibit varying levels of bias and reliability in their ratings. As a result, experts

disagree. To produce accurate estimates of latent concepts, researchers working with expert

surveys must endeavor to model this disagreement.

While researchers have used many techniques to take rater bias and reliability into ac-

count when estimating latent concepts, most such political science data sets report aver-

age expert responses (Teorell, Dahlstroem & Dahlberg 2011, Norris, Frank & Mart́ınez I

Coma 2013) occasionally including standard deviations to provide a measure of uncertainty.

Such an approach implicitly assumes that all experts 1) are equally expert with regard to

the concept being estimated, and 2) perceive the question scale equivalently. As the scope

of an expert-coded endeavor increases—both in terms of the number of experts involved and

the tasks experts perform—these assumptions become more problematic.

Item-response theory (IRT) modeling strategies provide an alternative method for aggre-

gating expert-coded data. Specifically, they allow scholars to account for two main sources

of expert disagreement: 1) expert reliability and 2) di↵erential item functioning (DIF), or

di↵erences between experts in their perception of question scales. However, scholars have

little experience using IRT models to analyze the sorts of panel data that are common in

expert surveys in political science. Specifically, such data often involve multiple experts

coding several countries, with disjoint sets of experts rating observations across space and

time. Because most experts cannot rate every country in the world, such data are sparse

(i.e. poorly “bridged”) and therefore may not be su�cient for traditional methods for deal-

ing with reliability and disagreement. As a result, it is unclear if IRT models are appropriate

for analyzing such data.

In this paper, we analyze the utility of six IRT models for dealing with the issues that

producers of cross-national expert data sets face. Specifically, we describe IRT models that

range in complexity and thus the demands they place on the data: the simplest assumes

that all experts are equally reliable and perceive scales in the same way, while the most

complex explicitly models di↵erences in 1) expert reliability and 2) DIF. Furthermore, we

model DIF in two di↵erent ways: 1) with an expert-specific intercept, holding thresholds
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constant across experts; and 2) with expert-specific ordinal thresholds. The first modeling

strategy assumes that DIF takes the form of a constant shift on the latent scale, while the

second makes no such assumption. In principle, the second strategy better reflects DIF in

that experts likely vary by threshold, as opposed to just by intercept. However, this more

general parameterization demands much of the available data: it is possible that gains in

generality are o↵set by di�culties in accurately estimating parameters with sparse data.

We use two tactics to analyze the utility of specific IRT models. First, we use these

six models to estimate latent values from expert ratings in the V–Dem v6.2 data set. V–

Dem is a large scale, cross-national and cross-temporal enterprise that attempts to measure

various concepts related to democracy, ranging from gender equality to judicial accountabil-

ity (Coppedge et al. 2014, Coppedge, Gerring, Lindberg, Teorell, Altman, Bernhard, Fish,

Glynn, Hicken, Knutsen, Marquardt, McMann, Paxton, Pemstein, Reif, Skaaning, Staton,

Tzelgov, Wang & Zimmerman 2016). Experts code a series of Likert-scale questions; almost

all experts code the entire time-series (1900-2015) for a single country. Since experts code

multiple variables on a variety of topics, it is plausible that some experts may have less

expertise on any given variable than many of their peers. Given diverse expert backgrounds,

there is strong reason to believe experts may interpret the question scales di↵erently. As

a result, V–Dem experts likely vary in their level of expertise and their scale perception.

Equally importantly, many experts also code either a complete time-series for a second, dis-

similar country, or multiple countries in a single year. As a result, while there is bridging in

the data, it is far from complete. These data therefore represent an excellent, and ecologi-

cally valid, testing ground for the application of IRT models to multi-expert coded data in

comparative politics.

We focus on a single V-Dem variable that uses expert ratings to estimate the extent of

political killings within countries over time. The six IRT parameterizations that we analyze

produce similar estimates when fit to the V-Dem data, and show clear improvement over

aggregations based on normalized expert-coded means and standard deviations, especially

in terms of estimated certainty about the latent quantities. In terms of specific models, the

results clearly indicate that modeling expert-specific reliability yields country-year estimates

with higher face validity than models that do not include this parameter. However, di↵erent

methods of parameterizing DIF yield diverging estimates that require further analysis.

We therefore simulate data with di↵erent patterns of DIF and reliability. For the purpose

of ecological validity, we 1) treat the normalized expert mean of each country-year observation

as the “true” values for political killing in a country; and 2) maintain the structure of the V–

Dem data, assigning experts to country-years in the same pattern that we observe in reality,

thereby replicating actual bridging patterns. Using this overarching framework, we then
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simulate data sets with di↵erent assumptions about DIF and expert reliability, and analyze

the estimates produced when running the six IRT models on the simulated data. We find

that parameterizing DIF and variation in expert reliability increases the degree to which

model point estimates reflect the true population values when the simulated data involve

DIF and variation in reliability; in simulated data without DIF or variation in reliability, IRT

models perform roughly equivalently to the mean. This finding indicates that IRT models

with reliability and DIF parameters are safe in the absence of DIF or inter-expert reliability

variation; when there is great DIF and variation in reliability, these models are essential.

Results regarding the parameterization of DIF are more complicated. In general, models

that include expert-specific thresholds outperform models with expert-specific intercepts in

the presence of relatively lower amount of variation in DIF and reliability, while models with

expert-specific intercepts fit the data better in cases with higher levels of DIF. This result

indicates that the preferable method for parameterizing DIF depends on the messiness of

the data generating process.

1 Agreement and reliability in expert surveys

The goal of expert-coded data is to develop accurate measures of concepts that are di�cult

or impossible to code directly. For example, while there are a variety of proxies for the

degree to which a country’s elections are free and fair, not one fully encapsulates the concept

which this phrase entails. As a result, a scholar interested in measuring this concept cross-

nationally would do well to elicit the opinions of experts on this topic for given country years.

However, the lack of a single “true” measure of such concepts means that it is possible that

individual experts may give divergent assessments of the same concept, even if they are

provided with a cross-nationally compatible scale. As a result, it is important to use codings

from multiple experts to both triangulate on a reasonable point estimate, and to produce

an estimate of confidence in that score. At the same time, as an expert-coding endeavor

expands in scale, it becomes increasingly possible that some experts may not be as “expert”

as others, especially if they are asked to code countries or concepts beyond their area of

expertise. In other words, treating all experts as being exchangeable risks incoherence in

developing estimates of a country’s true position in a cross-national scale.

For these reasons, well-designed expert-coded datasets generally augment point estimates

with measures of inter-coder agreement and/or reliability, in order to quantify uncertainty

around estimates of latent concepts (Kozlowski & Hattrup 1992, Boyer & Verma 2000, Van

Bruggen, Lilien & Kacker 2002, LeBreton & Senter 2007). Agreement refers to “the inter-

changeability among raters; it addresses the extent to which raters make essentially the same
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ratings” for each case (Kozlowski & Hattrup 1992), while reliability measures the extent to

which each rater provides consistent ratings—relative to other raters—across cases.1 All

surveys that ask multiple raters to code each case—even if each rater only codes a single

case—can provide measures of agreement.2 However, only surveys where raters rate multiple

cases, and where there is substantial cross-rater overlap in rated cases, can provide measures

of reliability.3 As Lindstaedt, Proksch & Slapin (2016) lament, this means that most expert-

coded datasets in political science provide only a case-level measure of agreement (generally

the standard deviation of the raw scores), average ratings to produce point estimates, and

include no measures of rater reliability. Ideally, expert-based datasets rely on measures of

both agreement and reliability to summarize confidence around estimates of latent traits,

and use estimates of rater reliability to weigh experts’ individual contributions to the point

estimates themselves (Johnson & Albert 1999, Pemstein, Meserve & Melton 2010, Pemstein,

Marquardt, Tzelgov, Wang & Miri 2015). Estimating and adjusting for reliability, rather

than just agreement, in expert coded datasets has clear utility: not all experts are equally

reliable in their codings, and accounting for this variance in reliability leads both to more

accurate estimates of the concepts they code, and better estimates of confidence around

those estimates (Johnson & Albert 1999).

2 Agreement and reliability in V–Dem data

Data from the V–Dem Project provide an excellent opportunity to both illustrate the im-

portance of accounting for variation in expert coder reliability and agreement, and assess the

utility of di↵erent methods of aggregating expert ratings. The V–Dem data set includes 165

variables coded by over 3,000 experts, covering over 17,000 country-years (most countries and

many colonies from 1900 to present) (Pemstein, Tzelgov & Wang 2015, Coppedge, Gerring,

Lindberg, Teorell, Altman, Bernhard, Fish, Glynn, Hicken, Knutsen, Marquardt, McMann,

Paxton, Pemstein, Reif, Skaaning, Staton, Tzelgov, Wang & Zimmerman 2016). The project

assigns experts to one or more of 11 surveys (generally two), each of which corresponds to

an area of substantive expertise; all experts also have one main country-of-coding, and al-

1Raters can both disagree consistently about scores but be equally reliable if they change their scores in
the same direction in the same periods. Another way to think about reliability is as a measure of consistency
in pattern of (dis)agreement.

2In political science this almost always means case-level rating standard deviations, although Lindstaedt,
Proksch & Slapin (2016) criticize this practice. The organizational psychology literature, cited above, pro-
vides a variety of improvements on this standard practice.

3Note that neither agreement nor reliability establishes validity. Experts who make similar and consistent
errors will reliably agree, but may also provide invalid estimates. This problem is inherently di�cult to solve
on the back end. Ideally, a researcher addresses this issue by selecting experts who are unlikely to be biased,
or who exhibit varying biases. Unfortunately, doing so is both hard-to-do and hard-to-check.
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most all code the entire temporal period for that country. Many experts also code a second

country for the entire temporal span, while others code multiple countries for a single year

(generally 2012) to increase cross-national compatibility in estimates (a practice known as

“bridging” (Pemstein, Tzelgov & Wang 2015)). With rare exceptions, every country-year has

a minimum of five experts, the majority being local (i.e. individuals residing in the country

for which they are coding variables). The vast majority of experts hold a PhD and work at

a university, though there are also coders from both the public and private sector, as well

as a large number of coders with master’s or other degree (Coppedge, Gerring, Lindberg,

Skaaning, Teorell, Andersson, Marquardt, Mechkova, Miri, Pemstein, Pernes, Stepanova,

Tzelgov & Wang 2016).

These factors yield a data set which is ideal for analyzing di↵erent methods for incorpo-

rating expert reliability and agreement into latent variable estimate: it includes codings from

several thousand experts of di↵erent backgrounds and areas of expertise who code a variety

of variables. While the project has attempted to facilitate bridging to an unparalleled extent,

the degree to which it has accomplished this objective is necessarily limited by coder exper-

tise. Therefore, modeling techniques traditionally deployed in domains with dense data may

fail to produce latent trait estimates that comparable across units when applied to V-Dem.

Indeed, given the constraints that expert coders face—not to mention financial constraints

on the project itself—it is unclear how much more bridging is even possible. As a result, the

V–Dem data set is one in which we expect there to be clear variation in expert reliability

and agreement, and with potentially insu�cient data to fully bridge estimates with standard

models. In sum, it provides a di�cult test case for IRT modeling, and exhibits issues that

likely plague most expert-coded data in comparative politics and international relations.

2.1 The data: Freedom from political killings

In this paper, we use data from one V–Dem variable as both an avenue for applied inves-

tigation of di↵erent models and a basis for simulation studies. Specifically, we analyze the

variable “Freedom from political killings,” which asks experts to code the degree to which

citizens of a state were free from state-sponsored killing in a given country-year. Experts

code this variable using a five-point Likert scale with potential responses ranging from one

(“political killings are practiced systematically and they are typically incited and approved

by top leaders of the government”) to five (“political killings are non-existent”). Figure

1 provides complete details regarding the question and response options. We analyze this

variable because it is amenable to face-validity checks: countries such as Germany, Russia

and Turkey have periods with high levels of political violence, as well as periods of relative
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Question: Is there freedom from political killings?
Clarification: Political killings are killings by the state or its agents without due process
of law for the purpose of eliminating political opponents. These killings are the result of
deliberate use of lethal force by the police, security forces, prison o�cials, or other agents
of the state (including paramilitary groups).
Responses:

1: Not respected by public authorities. Political killings are practiced systematically
and they are typically incited and approved by top leaders of government.

2: Weakly respected by public authorities. Political killings are practiced frequently and
top leaders of government are not actively working to prevent them.

3: Somewhat respected by public authorities. Political killings are practiced occasionally
but they are typically not incited and approved by top leaders of government.

4: Mostly respected by public authorities. Political killings are practiced in a few isolated
cases but they are not incited or approved by top leaders of government.

5: Fully respected by public authorities. Political killings are non-existent.

Figure 1: V–Dem Question 10.5, Freedom from Political Killings.

calm; countries such as Canada, on the other hand, have little history of political killing.

The variable is also one with great variation in expert characteristics. Among the 1,048

unique experts who coded these data there are 164 unique countries-of-birth, 158 unique

countries-of-residence, and 128 countries-of-education. Sixty-two percent of the experts hold

a PhD, 27 percent an MA, three percent a professional degree (e.g. MD, JD), seven percent

a BA or equivalent, and less than one percent just a secondary level of education or post-

secondary vocational training. Sixty-one percent of experts work at a university, 13 percent

at an NGO, seven percent are self-employed, six percent are students, three percent work

in the private sector, four percent work for a government organ, and 2 percent work for a

state-owned enterprise. Twenty-seven percent of experts are female, and the mean age in

2014 was 45. Given this wide variation in backgrounds, there is strong reason to expect that

experts would vary in their perceptions of the latent concept.

In terms of variation in expert reliability, experts vary along a variety of factors that

may proxy their average expertise. First, there is variation among experts in terms of the

number of countries and country-years they code. On average, experts code approximately

two unique countries, with a range from one to 27 countries. The average expert codes 83
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(sd = 63) country-years.4 Given that experts may become less reliable as they code countries

with which they are less familiar, and may experience fatigue the more country-years they

code, this variation should yield variance in expert reliability.

Experts also evince variation in the degree to which they vary their codings: the average

standard deviation in coding is 0.84 (sd = 0.58). While there are many valid reasons why

an expert may not vary her coding (e.g. an expert could have only coded countries that did

not vary greatly in their scores, such as Switzerland), in many other cases coding variation

clearly measures the degree to which an expert was attentive to changes in her country and

thus her reliability.

2.2 Preliminary analyses

Cursory examination of the data confirms our expectation that experts diverge in how they

code similar cases, and that this divergence yields mean and standard deviation estimates of

dubious quality. Equally importantly, much of this divergence appears be a function of DIF

and variation in reliability across experts. Experts generally report similar trends, albeit

with di↵erent scales, indicating that DIF is a great concern. There is also evidence that

some experts are less reliable than others in that they systematically code di↵erent patterns

than their peers.

Figure 2 illustrates these forms of divergent, using data at the year-level from 1900-2015

in Canada, Germany, Turkey and Russia. The first column presents the variation in expert

ratings across time, with each colored line representing the coding patters of an individual

expert; the second column displays the raw expert-coded average and 95 percent confidence

interval around the mean, across time.5 Horizontal lines correspond to the scale of the

question, with a five representing a country-year free from political killings, and a one a

society in which political killings are systematic.

Though all countries exhibit variation in expert ratings, there are country-years in which

experts are unanimous in their ratings: all experts agree both Germany and Canada were free

from political killings in recent years, while all experts rate political killings as systematic in

Germany during the Holocaust. However, in countries and periods with a more complicated

history of political killings, expert disagreement is endemic. Indeed, if we rely on simple

averages and calculate confidence at the 95 percent level, the level of political killings within

4We performed actual analysis on “reduced country-years” or “regimes.” In particular, we treat periods
of time during which no rater changes 1) her rating for a country or 2) her confidence in a rating, as
individual observations. This reflects the fact that institutions are largely static, and avoids mistakenly
treating perfectly correlated observations as independent. See Pemstein et al. (2015) for further details and
justification. The average expert coded 15 reduced country-years, with a range from 1 to 131 (sd = 15).

5We use the R package ggplot2 to create all graphics (Wickham 2009)
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Figure 2: Expert codings and average with standard deviation across time
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both Turkey and Russia are largely indistinguishable across time: the confidence intervals

around the mean span the scale for many country-years.

However, even in these cases, experts generally appear to follow similar trends, and the

point estimates have reasonable face validity. For example, experts consider Ottoman-era

Turkey and Turkey of the 1980s-1990s to have had lower levels of freedom from political

killing than other periods, though their definition of “lower” varies. Similarly, all experts

save one consider political killings to have been more systematic during the Stalinist terror

than they were in the Tsarist era or the late Communist period.

Despite this strong evidence of general agreement in trends, there are some experts who

appear to systematically diverge from other experts in their assessments. For example, one

Russia expert codes Stalinist Russia as having the highest level of freedom from political

killings relative to other years. A single Canadian expert argues that political killings were

occasional in Canada until the 1960s, while all other experts code Canada as free from

political killings from 1900 to the present. This is prima facie evidence of variance in

reliability across experts.

Given this clear evidence of expert scale disagreement and variation in expert reliability,

using raw means—and measures of variance around the mean—to model the latent trait of

political killing is clearly problematic in this context. A modeling strategy that explicitly

allows for expert disagreement and variation in reliability can alleviate these issues, improving

both point estimates and measures of confidence.

3 IRT models of expert-coded data

We estimate six di↵erent IRT models to assess their relative utility in poorly-bridged expert-

coded data settings.6 Our IRT models assume that experts make stochastic mistakes because

they lack perfect information about the latent trait that they are attempting to rate and the

scales they are using. In particular, we assume that each rater first perceives latent values

with error, such that

ỹctr = zct + ectr (1)

where zct is the “true” latent value of the given concept in country c at time t, ỹctr is

rater r’s perception of zct, and ectr is the error in rater r’s perception for the country-

year observation. We call the actual observed vector of ratings y, with individual element

yctr. If we assume that all expert ratings follow identical error distributions, the cumulative

6For a thorough discussion of Bayesian ordinal IRT models, see Johnson & Albert (1999), Treier &
Jackman (2008), and Pemstein et al. (2015).
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distribution function for the error term takes the form of Equation 2.

ectr ⇠ F (ectr/�) (2)

Ordinal IRT models assume that raters have “thresholds” on the underlying latent scale

ỹ—which we assume is interval-valued—that they use to translate a continuous latent con-

cept into ordinal categories, producing the observed values in y. In its simplest formulation,

we assume no DIF: rater r places observation ct into ordinal category k if �k�1 < ỹctr  �k,

where each � is a threshold representing a cutpoint on the underlying scale that is constant

across coders. In other words, if rater r perceives a latent trait to fall below �1, she awards

the observation a rating of 1, if the interval latent value appears to her to fall between �1

and �2 she codes it a 2, and so forth. Equation 3 presents the likelihood of this model.

Pr(yctr = k) = Pr(ỹctr > �k�1 ^ ỹctr  �k)

= Pr(ectr > �k�1 � zct ^ ectr  �k � zct)

= F

✓
�k � zct

�

◆
� F

✓
�k�1 � zct

�

◆

= F (⌧k � zct�)� F (⌧k�1 � zct�)

(3)

Where ⌧k =
�k
� represents the estimated threshold with error, and � = 1

� a scalar param-

eter also estimated with error.

Our simplest model estimates the latent trait as being a weighted average of the data,

with constant thresholds and discrimination error across coders. More precisely, it has the

likelihood in Equation 4.

Pr(yctr = k) = � (⌧k � zct)� � (⌧k�1 � zct) (4)

Here k represents each of five ordinal categories and � is the CDF of the normal distribu-

tion. We assume a vague N (0, 1) prior for the distribution of z, identifying the underlying

latent scale.7 This model assumes that all experts perceive the scale in the same fashion.

The model also assumes that all experts are equally reliable, making stochastic errors at the

same rate (� = � = 1).

We expand upon this simple model in two directions. First, we address DIF, modeling

experts as having di↵erent interpretations of ordinal values to account for expert disagree-

7See Johnson & Albert (1999) for a discussion of the role of priors in Bayesian IRT models.
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ment with regard to the scale. Second, we model reliability by introducing an expert-specific

parameter, known as a discrimination parameter in the IRT literature, to weight rater con-

tributions to the estimation of the latent values. We also discuss various permutations of

these models, culminating in models that account for both potential sources of expert dis-

agreement.

3.1 Measuring di↵erences in expert scale interpretation

We pursue two strategies to measure expert disagreement about the scale. In the first strat-

egy, we assume that experts may have di↵erent intercepts that are hierarchically clustered

about the main country they code. The V–Dem Project recruits all experts based on their

expertise on a specific country, and it is reasonable to believe that their expertise regard-

ing this country systematically colors their interpretation of latent concepts. In the case of

freedom from political killings, an individual who is an expert on a country with generally

high levels of political killings may systematically consider the level of political killings to

be lower than an expert who codes a country that has little history of political killings. As

a result, she may consider her country to only have “occasional” (a score of three) political

killings when other experts may consider the rate of killings to be “frequent” (a score of two).

Hierarchically clustering these intercepts serves two purposes. First, experts who only code

countries with low levels of political killings may never provide a score of one or two (system-

atic or frequent political killings, respectively). As a result, there are not su�cient data to

determine their intercept without adding information from similar experts who have coded

the full range of values. Second, hierarchical clustering facilitates bridging across countries

by providing additional information about how similar experts code di↵erent countries (see

Pemstein, Tzelgov & Wang (2015) for a more thorough description of bridging and cross-

national comparability in expert-coded data). The resulting model with hierarchical expert

intercepts takes the form of Equation 5.

Pr(yctr = k) = � (⌧k � r � zct)� � (⌧k�1 � r � zct)

r ⇠ N (cr
, 0.5)



cr ⇠ N (0, 0.5)

(5)

This model di↵ers from Equation 4 in the presence of of a unique intercept, , for each

expert r. In turn, r is distributed about an average  for experts who code main country8

8Some experts rate more than one country, but each expert was recruited primarily to code a particular
country which we refer to as her “main country.”

11



cr with a standard deviation of 0.5; cr is distributed about zero with a standard deviation of

0.5. The choice of a standard deviation is somewhat arbitrary; we use 0.5 because it allows

for a degree of variation that will be informative, but not overpower other model parameters.

A model with hierarchical intercepts does not account for the fact that experts may have

idiosyncratic interpretations of the di↵erences between thresholds. That is, instead of sys-

tematically over- or under-estimating latent values, experts may diverge in how far apart

they consider di↵erent levels. For example, though two experts may largely agree on what

constitutes a society in which there are systematic political killings, they may disagree on

what constitutes a society in which there are “frequent” vs. “occasional” political killings.

To account for such di↵erences, we provide a model in which experts have unique thresh-

olds, hierarchically clustered by the main country they code. The rationale for hierarchical

clustering is essentially the same for thresholds as for intercepts. Equation 6 presents the

likelihood for a model that includes hierarchical thresholds.

Pr(yctr = k) = � (⌧r,k � zct)� � (⌧r,k�1 � zct)

⌧r,k ⇠ N (⌧ crk , 0.25)

⌧

c
k ⇠ N (⌧µk , 0.25)

⌧

µ
k ⇠ U(�2, 2)

(6)

Here ⌧

µ
k represents the overall population threshold µ for category k; ⌧

c
k the overall

threshold for experts with a common main country-of-coding c, and ⌧r,k the expert-r specific

threshold. As with the standard deviations for , the standard deviations of 0.25 for ⌧

are somewhat arbitrary, with 0.25 allowing for substantial variation while preserving cross-

national bridging.

3.2 Measuring variation in reliability

We also provide models that account for variation in expert reliability. More precisely, by

weighting each expert’s contribution to the latent variable, it is possible to weight downward

the scores of experts who non-systematically diverge in either the scale or direction of their

codings from those experts who code the same cases. This approach assumes that the average

expert is unbiased, after accounting for DIF.9 For identification purposes, we also restrict the

discrimination parameter to being positive. In practice, this restriction means that experts

9This assumption is potentially problematic when experts exhibit systematic bias that is not adequately
modeled by other parameters, specifically di�culty or other parameters designed to capture DIF. In other
words, the model may mistake systematic for non-systematic error.
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who code in the opposite direction of most other experts contribute less to the estimation

procedure (i.e. they have an estimated discrimination parameter close to zero). The most

straightforward method for incorporating reliability into the estimation procedure is to add a

� ⇠ N (1, 1) discrimination parameter10 for each expert r to the simple IRT model presented

in Equation 4:

Pr(yctr = k) = � (⌧k � �rzct)� � (⌧k�1 � �rzct) (7)

The model in Equation 7 ignores DIF-driven coder disagreement, assuming that varia-

tion in codings is solely a function of reliability: if an expert consistently provides di↵erent

scores than other experts, the model considers her less reliable. Given the previous dis-

cussions of potential di↵erences in scale perception, this assumption is problematic, as the

model attributes systematic bias to random error. As a result, obvious extensions of this

model add this expert-specific reliability parameter to the previously discussed models with

hierarchically-clustered intercepts (Equation 5) and thresholds (Equation 6). Equations 8

and 9 illustrate these extensions.

Pr(yctr = k) = � (⌧k � r � �rzct)� � (⌧k�1 � r � �rzct) (8)

Pr(yctr = k) = � (⌧r,k � �rzct)� � (⌧r,k�1 � �rzct) (9)

These models include parameters designed to capture both systematic and non-systematic

contributions to rater disagreement.

4 IRT Models of Freedom from Political Killings

We fit each of these six models to the V–Dem Freedom from Political Killings data to de-

termine the degree to which model parameterization matters in estimating latent variables

from expert-coded data. We use Bayesian Markov chain Monte Carlo (MCMC) simulation

methods to fit these models,11 allowing us to simulate samples from the posterior distribu-

10We also restrict � to positive values for identification purposes.
11We use the statistical programming software STAN (Stan Development Team 2015) to run all analyses.

See Appendix A for STAN code.
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tions of the parameters of interest—⌧ , , �, and z—which we can use to construct point

estimates (posterior medians) and estimates of certainty.12

Country-year point estimates (i.e. the posterior median) from these models are highly

correlated, ranging in correlation from 0.89 to 0.99. Figure 3 presents this relationship,

showing the rank orders of the normalized empirical means on the horizontal axes and the

point estimates from di↵erent models on the vertical axes. Rows represent di↵erent methods

for parameterizing reliability, while columns represent di↵erent methods for parameterizing

DIF. In all models save that with no parameterization of expert disagreement or reliability (in

which the correlation is close to perfect), the greatest changes in rank orderings occur between

the extremes, with models with hierarchical intercepts showing the greatest divergence from

the raw means, especially in the cases those models that also have reliability parameters. The

addition of expert-specific reliability parameters also increases the degree to which model

point estimates diverge from the normalized mean.

There are several potential explanations for these findings. With regard to the high cor-

relation between di↵erent models, experts may have relatively low levels of variance in their

reliability and agreement—a distinct possibility, given the rigorous recruitment criteria and

well-designed question. More pessimistically, it is possible that the models are insu�ciently

bridged to adequately account for DIF. The fact that the hierarchical intercept models are

the least correlated with other estimates perhaps supports this interpretation, as the hier-

archical intercepts require less data than the hierarchical threshold models to estimate DIF.

On the other hand, the greater variation in the hierarchical intercept models is also poten-

tially evidence that the models are giving too much strength to the intercepts, leading the

estimates astray: i.e. the models are estimating cross-threshold trends where none exist. For

example, if experts exhibit large threshold shifts at the bottom of the scale, but not the top,

these models will produce misleading estimates.

For better intuition into the causes of this divergence—as well as to determine whether

or not the high correlation is evidence that all models are producing roughly the same

data—it is worth analyzing actual cases with di↵erent patterns of agreement and reliability.

Figures 4 and 5 present graphical illustrations of country-year estimates across time for

countries that diverge drastically in terms of expert agreement and divergence: Germany

and Russia (analyses of Canada and Turkey are available in Appendix B). Dots represent

median estimates across iterations of the MCMC algorithm, while vertical lines represent 95

percent highest posterior density (HPD) intervals about these estimates, the rough equivalent

12The Bayesian analog of the confidence interval is the highest posterior density (HPD) region which
roughly contains a given percentage of the posterior mass. For example, if we construct a 95 percent HPD
region we can say that there is a 95 per cent probability that the parameter falls within that region.
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Figure 3: Relationship between ranks of country-year average and median estimate from
di↵erent IRT models
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of frequentist 95 percent confidence intervals. Horizontal lines represent median overall

threshold estimates for each model. A score above the highest threshold indicates that the

country year was free from political killings, while a score below the lowest threshold indicates

that the country year experienced systematic political killings.

Germany (Figure 4) is a country in which experts generally code similar trends, but

disagree about the scale except in particularly clear-cut cases (i.e. the Holocaust and the 21st

century). Estimates are largely consistent across models with two main points of divergence.

First, the addition of reliability parameters drastically reduces the size of the 95 percent HPD

intervals in the pre-WWI period, which indicates that some divergent experts have received

lower reliability scores, reducing the influence of their scores on the estimates. Second,

the hierarchical intercept models appear to generally shift German estimates downward,

indicating that either these experts may have lower thresholds overall than other experts, or

that by virtue of coding a country with a distinctly low period as well as periods with high

values the model artificially assigns them erroneously low intercept values.

Russia, presented in Figure 5, is a case with massive disagreement about scales. It is also

a case in which one expert diverges in directionality from other experts, i.e. there is an expert

who appears to be very unreliable. Models with reliability clearly reduce the contribution of

this expert to the latent concept estimate and correct for some degree of DIF between the

other experts, with model-based uncertainty estimates drastically reduced in models with

this parameterization.

The analyses of models of V–Dem data regarding political killings indicate that all IRT

models behave similarly, with the main points of divergence occurring due to reliability

parameters and hierarchical intercepts. Assessing the validity of these di↵erent models is

di�cult, given the lack of a reference point. Simulated data, on the other hand, provides a

straightforward means by which to judge the degree to which di↵erent models approximate

reality.
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5 IRT analyses of simulated data

Given the ambiguous results from the analyses of actual data, we assess the relative utility

of the di↵erent models by fitting them to simulated data with di↵erent degrees of variance

in expert agreement and reliability. More precisely, we create simulated data that varies

in terms of both degree and form of variance in expert reliability and DIF, then combine

the di↵erent forms of reliability and DIF to create 21 unique data sets that correspond to

a variety of di↵erent possible situations. This strategy allows us to investigate the di↵erent

conditions under which IRT models both under- and outperform traditional aggregations

of these data (the mean), as well as compare the performance of di↵erent IRT models to

each other. The simulated data also evince a high level of ecological validity, as we maintain

the bridging structure and distribution of the V–Dem data, meaning that our findings are

applicable to actual expert-coded data.

5.1 Simulation structure

We use V–Dem data as a basis to generate ecologically plausible data for our simulations.

More precisely, we treat the normalized means of the expert-coded data as the “true” values

for each country-year in our simulated datasets. Furthermore, we maintain the structure of

the data in terms of both the number of experts for each country year and the country-years

each expert coded. That is, if an expert coded the entire time period for a country and one

country-year for two additional countries, she is assigned the same countries and years in the

simulated data, though her actual ratings are simulated based on the algorithms presented

in this section. As a result, the simulated data match the V–Dem data in terms of the degree

to which experts who code multiple countries bridge countries. We then simulate data with

di↵erent levels of variance in expert reliability and agreement about ordinal scales (DIF),

which we combine to create simulated data that vary along both of these parameters.13

5.1.1 Simulated reliability

We vary reliability by simulating expert-specific parameters that have three di↵erent levels

of variation: in the first form, all experts have identical reliability (�r = � = 1, where

�r represents expert r’s reliability parameter �); in the second form, experts vary in their

reliability (�r ⇠ N (1, 0.5)); in the third form, experts vary greatly in their reliability (�r ⇠
N (1, 1)). Since we occasionally observe experts with apparent negative directionality in

their reliability (e.g. experts who increase their coding values when other experts decrease

13Appendix C contains the simulation algorithm.
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their coding values), we do not truncate the reliability parameters to be positive in the

simulated data. Especially in the case of high variation in reliability, this strategy results

in a nightmare scenario for an expert-coding enterprise: here approximately 18 percent of

experts have negative directionality in their coding. As a result, the simulated data with

high variation in reliability represent a very strong test of an aggregation method: if models

are able to recover data even in this worst-case scenario, they are of clear usefulness.

5.1.2 Simulated DIF

We model DIF in four distinct ways. The first strategy provides baseline data for additional

analyses, assuming complete expert agreement on the mapping of latent perceptions into

ordinal ratings. We estimate universal threshold values as a function of the probability of

an expert providing a given ordinal value in her coding, i.e. we use the quantile function of

the normal distribution to map the probability of being in di↵erent ordinal categories in the

V–Dem data to threshold values. Thus, ⌧r;1,2,3,4 = �1,2,3,4 = (�0.88,�0.31, 0.14, 0.83), where

⌧ represents simulated threshold k for expert r.

The second strategy for modeling DIF assumes that experts only disagree according to a

constant value across thresholds. We estimate the intercept parameter  for expert r hierar-

chically, keeping with our modeling assumption that perceptions of a main country influence

DIF. Specifically, we first simulate  for main country-coded cr as distributed N (0, 0.5),

with  for expert r distributed N (cr
, 0.5). This method represents an intermediate level

of additive DIF. As with reliability, we also model a high level of variance in additive DIF:

the algorithm for the high variation simulations is similar to that for medium-level variation,

with the only di↵erence being that both 

cr and r have a standard deviation of 1. As in

the the case of high variation in expert reliability, the high variation in additive DIF repre-

sents a nightmare scenario: given that the simulated true threshold range is (-0.88, 0.83), a

substantial proportion of r falls outside of this range. While such a scenario is hopefully

unlikely, modeling it allows us to examine the circumstances under which certain models

become less e↵ective at recovering true latent population values.

In the third strategy of modeling DIF, we assume that the perception of distance between

thresholds varies randomly by expert, without any cross-thresholds trends. As with the

additive DIF, we assume a hierarchical structure to this form of DIF. Namely, we first

simulate ⌧ for each main country-coded cr and threshold k as being distributed N (�k, 0.25),

where � represents the true population threshold values. Each expert r has thresholds

⌧r,k ⇠ N (⌧ crk , 0.25). Again, we also model this form of DIF with high variation, where we

replace the standard deviation of 0.25 with a value of one for both levels of the hierarchical

structure.
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The fourth strategy perhaps most reflects reality: we model experts as generally perceiv-

ing thresholds to be higher or lower than their true population values, and their perception

of individual thresholds varies as well. Under this assumption, experts exhibit random dis-

agreement about thresholds but have general “strictness” tendencies. More specifically, this

strategy is similar to the third, but both experts and and main-country-coded clusters are

assigned a dichotomous indicator which determines whether or not their thresholds are trun-

cated positive or negative. As with other forms of DIF, we model variation at both medium

(sd = 0.25) and high (sd = 1) levels.

5.1.3 Simulation data sets

We combine the simulated data with each of the three di↵erent levels of reliability (identical

reliability, and reliability with medium- and high-variance across experts) and seven forms of

scale agreement (perfect agreement, constant di↵erence across thresholds, threshold-specific

variance in disagreement, and threshold-specific variance that is generally higher or lower

than the true values) into di↵erent simulation data sets that reflect 21 distinct data generat-

ing processes (three levels of reliability ⇥ four forms of DIF, with three forms of DIF evincing

two levels of variation each). Finally, we ordinalize these data using a categorical distribu-

tion with probabilities based on the simulated thresholds and discrimination-weighted true

population values. We replicate the simulations thrice to increase confidence that findings

are robust.

5.2 Simulation results and discussion

To analyze the performance of the six di↵erent IRT models, we ran each model on each of the

21 distinct data generating processes in the three simulated data sets.14 For presentation

purposes, we report the mean squared error (MSE) of the median posterior country-year

estimates with reference to the true values, across all simulations. This statistic illustrates

the degree to which model point estimates generally diverge from the actual population

values, with smaller values representing models that yield point estimates closer to the true

population values. We also estimate three additional statistics regarding model fit: 1) the

percentage of country-year 95 percent HPD intervals that include the true value, 2) the

Pearson correlation coe�cient between the median posterior country year estimates and the

14All models ran eight chains for 10,000 iterations with a thinning interval of 20 and a burn-in of 1000
iterations. We assess convergence using the Gelman-Rubin diagnostic, considering a model to have converged
if 95 percent of country-year estimates had values at or below 1.1. Only four of the 126 models did not
converge based on this criterion; as a lack of convergence is prima facie evidence of poor model fit and only
occurs in instances of high simulated DIF, we report these models in Appendix E.
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true values and 3) the Kendall correlation coe�cient between the median posterior country

year estimates and the true values. As the implications of these results are roughly in line

with those regarding MSE, we report them graphically in Appendix D; tables for all statistics

are also available in Appendix E.15

Figure 6 reports MSE statistics across simulated data and di↵erent models. The first row

illustrates results from simulated data with no DIF, the second row results from simulated

data with medium threshold DIF, and the third row simulated data with high threshold DIF.

Columns represent di↵erent levels of simulated expert variation in reliability parameters,

ranging from fixed reliability in the first column to high reliability variance in the third

column. Each cell represents di↵erent models for estimating latent country-year values, with

the vertical axis representing di↵erent forms of incorporating DIF (i.e. not incorporating

DIF, incorporating DIF with hierarchical expert-specific intercepts, and incorporating DIF

with hierarchical expert-specific thresholds). Blue represents models with expert-varying

reliability parameters, and red models with fixed reliability parameters. The dots represent

the median point estimate across the three simulated data sets, while colored horizontal

segment lines represent the distance between the minimum and maximum estimate across

the data sets. If there is no line, there was little variation across data sets. Finally, the

vertical line represents the median MSE for the normalized country-year average of the data

across simulated data sets. This final statistic provides a baseline for analyzing the degree to

which IRT models either out- or under-perform the traditional method for deriving country-

year estimates: in the case of MSE, if the IRT estimates fall to the left of the line, it indicates

better performance.

In general, Figure 6 indicates that IRT models perform roughly as well or better than

the normalized mean in situations with these forms of DIF and either fixed or medium

levels of variance in reliability (the first two columns). Similarly, models that either include

fixed expert reliability or allow for varying expert reliability perform equivalently when the

simulated data has fixed or medium levels of variance in expert discrimination parameters.

The only exception to these general findings are with regard to the models that incorporate

DIF as a hierarchical intercept, which tend to underperform the other parameterizations of

DIF (i.e. no parameterization or parameterization as hierarchical thresholds). These findings

indicate that parameterizing DIF in the form of hierarchical thresholds and incorporating

15In models with hierarchical intercepts and no parameterization of DIF, we use the STAN default prior
for ordered probit regression. This default prior is improper, bounded (�1,1), and is thus dissimilar from
the uniform (�2, 2) prior on the overall thresholds in the hierarchical threshold models. We therefore ran
addition analyses on one simulated data set for models with hierarchical intercepts and no parameterization
of DIF, where the prior for the thresholds is Cauchy(0, 1). The results are essentially indistinguishable from
models with the default thresholds. See Appendix F for a comparison of these results.
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Figure 6: Mean squared error estimates across simulations with either no DIF or threshold
DIF
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Figure 7: Mean squared error estimates across simulations with truncated DIF
Discrimination = 1 Discrimination ⇠ N (0, 0.5) Discrimination ⇠ N (0, 1)
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expert-specific discrimination parameters is relatively safe: even in conditions where the

normalized mean may be appropriate, using these IRT models does not damage the accuracy

of the point estimates.

The third column of Figure 6 illustrates the value of incorporating variation in DIF and

reliability into IRT models. In this column, the simulated data have high variation in expert

reliability. Models that incorporate an expert-specific reliability parameter and hierarchical

thresholds universally outperform other models and the mean.

Figure 7 presents results regarding MSE from simulated data with truncated threshold

DIF, i.e. data with medium or high variation in threshold variance, truncated so that an

individual expert’s thresholds are consistently higher or lower than average. In the case

of medium levels of simulated threshold variance, the results are akin to those from data

with other forms of simulated threshold variance in Figure 6: at low and medium levels of

variance in expert reliability, di↵erent models perform similarly, but at high levels of variance

in reliability, models with expert-specific reliability parameters perform best. In the case of

the second row, which illustrates results from data with high truncated threshold variance,

the choice of DIF parameterization is of greater importance. In general, models that do not

parameterize DIF perform worse than those that include DIF in the form of either hierarchical

thresholds or intercepts. Though the distinction is slight, models with hierarchical intercepts

tend to perform better than those with hierarchical thresholds, especially in the case of

simulated data with high-level discrimination variance (third column, second row).

Finally, Figure 8 reports results from a data in which DIF is simulated as being a hier-
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Figure 8: Mean squared error estimates across simulations with intercept DIF
Discrimination = 1 Discrimination ⇠ N (0, 0.5) Discrimination ⇠ N (0, 1)
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archical intercept, i.e. experts perceive the same inter-threshold di↵erences, but universally

perceive them to be higher or lower. As in the other sets of simulated data, results from

models that analyze data with medium-level DIF (the first row) evince similar performance

when simulated expert variance in the discrimination parameter is low- or medium-level;

when discrimination variance is high, however, models with reliability parameters outper-

form those without these parameters. In contrast, when DIF is high (second row), models

with a hierarchical intercept parameterization of DIF outperform both those models with no

parameterization of DIF or parameterization in the form of hierarchical intercepts. This fi-

nal finding indicates that the somewhat restricted parameterization of inter-expert threshold

DIF can be overwhelmed by drastic additive variation in expert DIF, though it should be

noted that this level and form of DIF is highly unlikely to be encountered in actual expert

coding enterprises.

6 Conclusion

We use V–Dem data on political killings and simulations to examine the applicability of

IRT methods to cross-national panel surveys of expert coders. In particular, we compare

six di↵erent IRT parameterizations to the standard approach of summarizing expert ratings

using simple means and standard deviations. In actual V–Dem data regarding political

killings, all IRT output correlates highly with simple means. However, IRT methods produce

tighter estimates of uncertainty: 95 percent confidence intervals around means often span
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the rating space. In combination with the theoretical reasons to believe that experts vary in

reliability and scale perception, this result is a strong argument for the use of IRT models

in aggregating expert data.

There are also systematic di↵erences between IRT results, indicating disagreement across

methods on a non-negligible number of cases. Specifically, while models that account for

expert-specific reliability clearly outperform models that do not, it remains unclear how

best to model DIF: models that account for expert agreement in the form of hierarchical

thresholds and intercepts show divergence in their estimates, but neither method has clearer

face validity.

Simulation results provide some insight into this question. The results confirm the main

conclusions of the earlier analyses, demonstrating that IRT methods often significantly out-

perform simple averages in the extent to which they recover true values, and reliability

parameters drastically increase this recovery fit when there is simulated expert variation

in reliability. The simulation results also indicate that parameterizing DIF in the form of

hierarchical thresholds is a generally safe strategy, especially when simulated DIF is low or

shows no trends across thresholds. On the other hand, models with hierarchical intercepts

outperform those with hierarchical thresholds when DIF is high and evinces general trends

across thresholds. In other words, the preferable IRT strategy is a function of the data

generating process.

Broadly, our results suggest that scholars constructing cross-national expert surveys

should adopt IRT models to adjust for varying reliability and DIF in their coders. Such

models do no worse than simple averages, and may substantially outperform the naive ap-

proach. However, scholars must also design expert surveys with latent variable modeling

in mind. In particular, they should elicit “bridging” responses from experts to mitigate

the sparseness of their data, and to allow for cross-national comparability in estimates of

latent traits (Pemstein, Tzelgov & Wang 2015). While our simulation results show that even

sparse data like V–Dem benefit from the application of IRT methods, V–Dem exhibits sub-

stantially more bridging than the average cross-national expert survey, and researchers rarely

build bridging into their expert survey designs. A fruitful avenue for future research would

be to determine how much bridging is necessary to realize the measurement improvements

that we demonstrate here.
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A STAN code

A.1 Model without DIF or reliability parameters

data {

int<lower=2> K;//categories

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=K> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

ordered[K-1] gamma; // world-level cutpoints

}

model {

vector[K] p;

real left;

real right;

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

for (j in 1:J) {

for (i in 1:N) if (wdata[i,j] != -1) {

left <- 0;

for (k in 1:(K-1)) {

right <- left;

left <- Phi_approx(gamma[k] - Z[i]);

p[k] <- left - right;

}

p[K] <- 1.0 - left;

wdata[i,j] ~ categorical(p);

}

}

}
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A.2 Model without DIF and with reliability parameters

data {

int<lower=2> K;//categories

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=K> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

ordered[K-1] gamma; // world-level cutpoints

real<lower=0> beta[J]; //reliability

}

model {

vector[K] p;

real left;

real right;

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

for (j in 1:J) {

beta[j] ~ normal(1,1)T[0,];

for (i in 1:N) if (wdata[i,j] != -1) {

left <- 0;

for (k in 1:(K-1)) {

right <- left;

left <- Phi_approx(gamma[k] - beta[j]*Z[i]);

p[k] <- left - right;

}

p[K] <- 1.0 - left;

wdata[i,j] ~ categorical(p);

}

}

}

A.3 Model with intercept DIF and reliability parameters

data {

int<lower=2> K;//categories
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int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=K> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

ordered[K-1] gamma; // world-level cutpoints

vector[C] epsilon_c; // country-level agreement

real epsilon[J]; //agreement

real<lower=0> beta[J]; //agreement

}

model {

vector[K] p;

real left;

real right;

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

for (c in 1:C) {

epsilon_c[c] ~ normal(0, .5); // row-access of gamma_c

}

for (j in 1:J) {

epsilon[j] ~ normal(epsilon_c[cdata[j]], .5); // note row-access

beta[j] ~ normal(1,1)T[0,];

for (i in 1:N) if (wdata[i,j] != -1) {

left <- 0;

for (k in 1:(K-1)) {

right <- left;

left <- Phi_approx(gamma[k] - epsilon[j] - beta[j]*Z[i]);

p[k] <- left - right;

}

p[K] <- 1.0 - left;

wdata[i,j] ~ categorical(p);

}

}

}
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A.4 Model with threshold DIF and reliability parameters

data {

int<lower=2> K;//categories

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=K> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

ordered[K-1] gamma[J];

vector[K-1] gamma_mu; // world-level cutpoints

matrix[C, (K-1)] gamma_c; // country-level cuts, rows are countries

real<lower=0> beta[J]; //reliability score

}

model {

vector[K] p;

real left;

real right;

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

gamma_mu ~ uniform(-2, 2);

for (c in 1:C) {

gamma_c[c] ~ normal(gamma_mu, .25); // row-access of gamma_c

}

for (j in 1:J) {

gamma[j] ~ normal(gamma_c[cdata[j]], .25); // note row-access

beta[j] ~ normal(1,1)T[0,];

for (i in 1:N) if (wdata[i,j] != -1) {

left <- 0;

for (k in 1:(K-1)) {

right <- left;

left <- Phi_approx(gamma[j,k] - Z[i]*beta[j]);

p[k] <- left - right;

}

p[K] <- 1.0 - left;
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wdata[i,j] ~ categorical(p);

}

}

}

B Additional illustrative cases of di↵erent IRT models

Canada, presented in Figure 12, is an example of a country with generally high agreement
about the level of political killings among experts, with the exception of one expert who
coded Canada as shifting from occasional (a score of three) to rare (four) to nonexistent (give)
levels of political killings over the past 115 years. All models indicate that the contribution
of the dissenting expert (i.e. the expert who claimed that political killings were ”occasional”
in Canada until the 1950s) is lower than would be in a model based on an average and
95 percent confidence intervals: HPD intervals indicate that Canada was either free from
political killings or experienced only rare political killings since 1900. The models vary
little in their estimates, though the addition of reliability parameters appears to draw both
estimates and HPD intervals toward the mean, which potentially indicates that the parameter
is overextending the data. Furthermore, models with a hierarchical intercept generally tend
to model Canada as having higher values than is the case with other models, consistent
with the idea that Canadian experts may have particularly high thresholds for determining
the level of political killings in a society given that they are mainly coding a country with
minimal political killings.

Turkey, illustrated in Figure 10, is a country in which experts generally code similar
trends, but with drastic disagreement about the coding scales at almost every period. In
this case, the di↵erences across models are more subtle than in the case of Germany. Reli-
ability parameters increase uncertainty about many estimates, especially in the presence of
hierarchical thresholds. This finding indicates that, given the divergence in scores, models
with reliability and DIF in the form of hierarchical intercepts cannot determine the extent
to which expert variation is a function of di↵erences in threshold perception or reliability.
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C Simulation algorithm

1. Estimate true value ⇠ for country-year ct by taking the mean of expert codings for each
country-year, then normalizing across country-years.

2. Simulate reliability and agreement values

• Simulate reliability � for expert r

– No variation �r = � = 1

– Medium variation: �r ⇠ N (1, 0.5)

– High variation: �r ⇠ N (1, 1)

• Simulate expert agreement parameters

– Perfect agreement

⇤ ⌧r;1,2,3,4 = �1,2,3,4 = (�0.88,�0.31, 0.14, 0.83)

⇤ r =  = 0

– Simulate intercept parameter  for expert r

(a) Simulate  for main country-coded cr

⇤ Medium variation: cr ⇠ N (0, 0.5)

⇤ High variation: cr ⇠ N (0, 1)

(b) Simulate  for expert r

⇤ Medium variation: r ⇠ N (cr
, 0.5)

⇤ High variation: r ⇠ N (cr
, 1)

(c) Create expert thresholds with formula ⌧r,k = �k + r

– Simulate threshold parameters ⌧ for expert r and threshold k,  = 0

(a) Simulate ⌧ for main country-coded cr

⇤ Medium variation: ⌧ crk ⇠ N (�k, 0.25)

⇤ High variation: ⌧ crk ⇠ N (�k, 1)

(b) Order ⌧ crk
(c) Simulate ⌧ for expert r

⇤ Medium variation: ⌧r,k ⇠ N (⌧ crk , 0.25)

⇤ High variation: ⌧r,k ⇠ N (⌧ crk , 1)

(d) Order ⌧r,k
– Simulate truncated threshold parameters ⌧ for expert r and threshold k,  = 0

(a) Assign main country-coded cr indicator ⇣cr ⇠ Bernoulli(0.5) for positive
or negative truncation

(b) Simulate ⌧ for main country-coded cr

⇤ Medium variation: ⌧ crk ⇠ N (�k, 0.25)

· If ⇣cr = 1, min(⌧r,k) = �k

· If ⇣cr = 0, max(⌧r,k) = �k

⇤ High variation: ⌧ crk ⇠ N (�k, 1), truncated as with medium variation
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(c) Order ⌧ crk
(d) Assign expert r indicator ⇣r ⇠ Bernoulli(0.5) for positive or negative

truncation

(e) Simulate ⌧ for expert r

⇤ Medium variation: ⌧r,k ⇠ N (⌧ crk , 0.25)

· If ⇣r = 1, min(⌧k) = ⌧

cr
k

· If ⇣r = 0, max(⌧k) = ⌧

cr
k

⇤ High variation: ⌧r,k ⇠ N (⌧ crk , 1), truncated as with medium variation

(f) Order ⌧r,k

3. Create perceived latent values � for expert r and country year ct with equation �rct =
�r⇠ct

4. Observed score yrct ⇠ Categorical(pkrct), where pkrct = �(⌧r,k � �rct)� �(⌧r,k�1 � �rct)
and � is the CDF of a normal distribution

• Simulate observed scores for all permutations of � (no variation, medium varia-
tion, and high variation) and ⌧ (perfect agreement, medium and high intercept
variation, medium and high threshold variance, and medium and high truncated
threshold variance).

• Total number of permutations of simulated data: 3⇥ (1 + 2 + 2 + 2) = 21

5. Repeat thrice to create three unique data sets with 21 combinations
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D Additional model fit figures
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Figure 11: Pearson correlation estimates across simulations either without DIF or threshold
DIF
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Figure 12: Kendall rank correlation estimates across simulations
Discrimination = 1 Discrimination ⇠ N (0, 0.5) Discrimination ⇠ N (0, 1)
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Figure 13: Percentage of 95 percent highest posterior distributions that include true values
across simulations
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E Simulation result tables

E.1 Mean squared error

Table 1: Results from analyses of simulated data without DIF and di↵erent levels of simulated
reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.18 (0.18, 0.19) 0.25 (0.23, 0.26) 0.36 (0.23, 0.37)

No DIF
Reliability= 1 0.18 (0.17, 0.18) 0.24 (0.23, 0.24) 0.34 (0.33, 0.36)
Expert-specific reliability 0.22 (0.21, 0.23) 0.21 (0.20, 0.22) 0.22 (0.21, 0.23)

Hierarchical intercepts
Reliability= 1 0.32 (0.32, 0.33) 0.38 (0.37, 0.39) 0.46 (0.44, 0.48)
Expert-specific reliability 0.34 (0.34, 0.36) 0.33 (0.32, 0.34) 0.31 (0.30, 0.34)

Hierarchical intercepts
Reliability= 1 0.21 (0.20, 0.21) 0.28 (0.26, 0.28) 0.38 (0.36, 0.40)
Expert-specific reliability 0.24 (0.23, 0.25) 0.23 (0.22, 0.23) 0.22 (0.22, 0.24)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 2: Results from analyses of simulated data with threshold variance ⇠ N(0, 0.25) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.22 (0.21, 0.22) 0.26 (0.24, 0.28) 0.39 (0.37, 0.40)

No DIF
Reliability= 1 0.20 (0.20, 0.21) 0.25 (0.23, 0.27) 0.36 (0.35, 0.37)
Expert-specific reliability 0.24 (0.24, 0.25) 0.22 (0.22, 0.24) 0.25 (0.23, 0.25)

Hierarchical intercepts
Reliability= 1 0.34 (0.34, 0.35) 0.38 (0.37, 0.39) 0.47 (0.44, 0.49)
Expert-specific reliability 0.37 (0.36, 0.38) 0.34 (0.33, 0.35) 0.33 (0.33, 0.35)

Hierarchical thresholds
Reliability= 1 0.22 (0.22, 0.22) 0.27 (0.26, 0.29) 0.38 (0.37, 0.39)
Expert-specific reliability 0.25 (0.25, 0.26) 0.24 (0.23, 0.25) 0.24 (0.23, 0.24)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 3: Results from analyses of simulated data with threshold variance ⇠ N(0, 1) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.37 (0.36, 0.41) 0.41 (0.41, 0.46) 0.53 (0.51, 0.58)

No DIF
Reliability= 1 0.35 (0.34, 0.38) 0.38 (0.37, 0.41) 0.46 (0.45, 0.49)
Expert-specific reliability 0.40 (0.39, 0.42) 0.38 (0.37, 0.40) 0.40 (0.36, 0.42)

Hierarchical intercepts
Reliability= 1 0.37 (0.37, 0.37) 0.42 (0.40, 0.42) 0.50 (0.46, 0.51)
Expert-specific reliability 0.43 (0.42, 0.43) 0.39 (0.38, 0.41) 0.39 (0.39, 0.40)

Hierarchical thresholds
Reliability= 1 0.30 (0.30, 0.31) 0.35 (0.33, 0.37) 0.44 (0.42, 0.45)
Expert-specific reliability 0.35 (0.34, 0.35) 0.32 (0.31, 0.32) 0.32 (0.20, 0.34)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 4: Results from analyses of simulated data with truncated threshold variance
⇠ N(0, 0.25) and di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.22 (0.22, 0.23) 0.29 (0.28, 0.29) 0.41 (0.39, 0.44)

No DIF
Reliability= 1 0.21 (0.21, 0.22) 0.27 (0.27, 0.28) 0.36 (0.35, 0.40)
Expert-specific reliability 0.25 (0.25, 0.25) 0.25 (0.24, 0.25) 0.25 (0.23, 0.25)

Hierarchical intercepts
Reliability= 1 0.34 (0.33, 0.34) 0.38 (0.38, 0.40) 0.45 (0.44, 0.50)
Expert-specific reliability 0.37 (0.37, 0.37) 0.34 (0.34, 0.36) 0.32 (0.31, 0.36)

Hierarchical thresholds
Reliability= 1 0.22 (0.22, 0.23) 0.29 (0.28, 0.29) 0.38 (0.37, 0.42)
Expert-specific reliability 0.25 (0.25, 0.26) 0.25 (0.24, 0.25) 0.24 (0.23, 0.26)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 5: Results from analyses of simulated data with truncated threshold variance⇠ N(0, 1)
and di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.62 (0.55, 0.66) 0.67 (0.57, 0.67) 0.74 (0.65, 0.80)

No DIF
Reliability= 1 0.54 (0.48, 0.56) 0.57 (0.49, 0.58) 0.53 (0.52, 0.60)
Expert-specific reliability 0.88 (0.69⇤, 0.94) 0.66 (0.63, 0.83) 0.64⇤ (0.59, 0.69)

Hierarchical intercepts
Reliability= 1 0.37 (0.36, 0.40) 0.43 (0.41, 0.43) 0.52 (0.47, 0.58)
Expert-specific reliability 0.42 (0.40, 0.45) 0.40 (0.37, 0.41) 0.38 (0.35, 0.43)

Hierarchical thresholds
Reliability= 1 0.41 (0.37, 0.43) 0.45 (0.41, 0.46) 0.52 (0.46, 0.55)
Expert-specific reliability 0.48 (0.49, 0.61) 0.47 (0.45, 0.50) 0.43 (0.41, 0.44)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 6: Results from analyses of simulated data with intercept variance ⇠ N(0, 0.5) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.34 (0.32, 0.36) 0.41 (0.38, 0.41) 0.51 (0.50, 0.55)

No DIF
Reliability= 1 0.32 (0.30, 0.33) 0.37 (0.35, 0.37) 0.45 (0.43, 0.47)
Expert-specific reliability 0.36 (0.33⇤, 0.39) 0.45 (0.44, 0.47) 0.34 (0.34, 0.37)

Hierarchical intercepts
Reliability= 1 0.35 (0.34, 0.35) 0.39 (0.37, 0.40) 0.49 (0.46, 0.50)
Expert-specific reliability 0.37 (0.36, 0.38) 0.36 (0.35, 0.37) 0.36 (0.33, 0.36)

Hierarchical thresholds
Reliability= 1 0.29 (0.28, 0.29) 0.34 (0.32, 0.34) 0.43 (0.42, 0.45)
Expert-specific reliability 0.30 (0.30, 0.32) 0.39 (0.38, 0.40) 0.29 (0.26, 0.31)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 7: Results from analyses of simulated data with intercept variance ⇠ N(0, 1) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.74 (0.73, 0.75) 0.78 (0.78, 0.78) 0.85 (0.81, 0.87)

No DIF
Reliability= 1 0.64 (0.64, 0.64) 0.66 (0.65, 0.67) 0.71 (0.68, 0.72)
Expert-specific reliability 1.12 (1.03, 1.13) 1.08 (0.97⇤, 1.10) 0.90 (0.89, 0.92)

Hierarchical intercepts
Reliability= 1 0.42 (0.41, 0.42) 0.46 (0.45, 0.47) 0.51 (0.50, 0.54)
Expert-specific reliability 0.42 (0.42, 0.43) 0.41 (0.40, 0.43) 0.44 (0.43, 0.46)

Hierarchical thresholds
Reliability= 1 0.50 (0.50, 0.51) 0.55 (0.54, 0.55) 0.59 (0.58, 0.62)
Expert-specific reliability 0.91 (0.83, 0.95) 0.70 (0.56, 0.84) 0.75 (0.74, 0.77)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

E.2 Pearson correlation coe�cient

Table 8: Results from analyses of simulated data without DIF and di↵erent levels of simulated
reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.91 (0.90, 0.91) 0.88 (0.87, 0.88) 0.82 (0.81, 0.88)

No DIF
Reliability= 1 0.91 (0.90, 0.91) 0.87 (0.87, 0.88) 0.82 (0.80, 0.82)
Expert-specific reliability 0.89 (0.88, 0.89) 0.89 (0.89, 0.89) 0.89 (0.88, 0.89)

Hierarchical intercepts
Reliability= 1 0.82 (0.82, 0.83) 0.79 (0.78, 0.80) 0.73 (0.72, 0.75)
Expert-specific reliability 0.80 (0.80, 0.81) 0.82 (0.81, 0.83) 0.83 (0.81, 0.84)

Hierarchical thresholds
Reliability= 1 0.89 (0.89, 0.89) 0.85 (0.85, 0.86) 0.79 (0.78, 0.80)
Expert-specific reliability 0.87 (0.87, 0.88) 0.88 (0.88, 0.88) 0.88 (0.87, 0.89)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 9: Results from analyses of simulated data with threshold variance ⇠ N(0, 0.25) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.90 (0.89, 0.90) 0.87 (0.86, 0.88) 0.81 (0.80, 0.81)

No DIF
Reliability= 1 0.89 (0.89, 0.89) 0.87 (0.86, 0.88) 0.81 (0.80, 0.81)
Expert-specific reliability 0.87 (0.87, 0.87) 0.88 (0.87, 0.89) 0.87 (0.87, 0.88)

Hierarchical intercepts
Reliability= 1 0.81 (0.81, 0.81) 0.79 (0.78, 0.79) 0.73 (0.71, 0.75)
Expert-specific reliability 0.79 (0.79, 0.80) 0.81 (0.80, 0.82) 0.82 (0.81, 0.82)

Hierarchical thresholds
Reliability= 1 0.88 (0.88, 0.89) 0.85 (0.84, 0.86) 0.79 (0.78, 0.80)
Expert-specific reliability 0.86 (0.86, 0.87) 0.88 (0.87, 0.88) 0.87 (0.87, 0.88)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 10: Results from analyses of simulated data with threshold variance ⇠ N(0, 1) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.81 (0.80, 0.82) 0.80 (0.77, 0.80) 0.74 (0.71, 0.75)

No DIF
Reliability= 1 0.81 (0.79, 0.81) 0.79 (0.77, 0.79) 0.74 (0.71, 0.74)
Expert-specific reliability 0.78 (0.77, 0.79) 0.79 (0.78, 0.80) 0.78 (0.77, 0.80)

Hierarchical intercepts
Reliability= 1 0.79 (0.79, 0.80) 0.77 (0.76, 0.78) 0.71 (0.70, 0.74)
Expert-specific reliability 0.76 (0.75, 0.76) 0.78 (0.77, 0.79) 0.78 (0.77, 0.78)

Hierarchical thresholds
Reliability= 1 0.84 (0.83, 0.84) 0.81 (0.80, 0.82) 0.75 (0.74, 0.77)
Expert-specific reliability 0.81 (0.81, 0.81) 0.83 (0.82, 0.83) 0.83 (0.81, 0.83)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 11: Results from analyses of simulated data with truncated threshold variance ⇠
N(0, 0.25) and di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.89 (0.89, 0.89) 0.86 (0.85, 0.86) 0.80 (0.78, 0.81)

No DIF
Reliability= 1 0.88 (0.89, 0.89) 0.85 (0.85, 0.86) 0.80 (0.78, 0.81)
Expert-specific reliability 0.87 (0.87, 0.87) 0.87 (0.87, 0.87) 0.86 (0.86, 0.88)

Hierarchical intercepts
Reliability= 1 0.81 (0.81, 0.82) 0.78 (0.78, 0.78) 0.75 (0.71, 0.75)
Expert-specific reliability 0.80 (0.79, 0.80) 0.81 (0.80, 0.81) 0.83 (0.80, 0.83)

Hierarchical thresholds
Reliability= 1 0.88 (0.88, 0.88) 0.85 (0.84, 0.85) 0.79 (0.76, 0.80)
Expert-specific reliability 0.86 (0.86, 0.87) 0.86 (0.86, 0.87) 0.87 (0.86, 0.88)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 12: Results from analyses of simulated data with truncated threshold variance ⇠
N(0, 1) and di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.69 (0.67, 0.73) 0.66 (0.66, 0.71) 0.63 (0.60, 0.68)

No DIF
Reliability= 1 0.69 (0.67, 0.73) 0.66 (0.66, 0.71) 0.68 (0.63, 0.69)
Expert-specific reliability 0.67 (0.66⇤, 0.71) 0.67 (0.65, 0.69) 0.65 (0.63⇤, 0.70)

Hierarchical intercepts
Reliability= 1 0.80 (0.78, 0.80) 0.76 (0.76, 0.77) 0.69 (0.65, 0.73)
Expert-specific reliability 0.76 (0.74, 0.77) 0.77 (0.77, 0.79) 0.79 (0.76, 0.81)

Hierarchical thresholds
Reliability= 1 0.77 (0.76, 0.79) 0.74 (0.74, 0.77) 0.70 (0.67, 0.73)
Expert-specific reliability 0.73 (0.73, 0.74) 0.75 (0.73, 0.75) 0.76 (0.76, 0.78)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 13: Results from analyses of simulated data with intercept variance ⇠ N(0, 0.5) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.83 (0.82, 0.84) 0.80 (0.79, 0.81) 0.74 (0.72, 0.75)

No DIF
Reliability= 1 0.83 (0.82, 0.84) 0.80 (0.80, 0.81) 0.74 (0.73, 0.75)
Expert-specific reliability 0.82 (0.79, 0.82⇤) 0.82 (0.82, 0.83) 0.81 (0.80, 0.81)

Hierarchical intercepts
Reliability= 1 0.81 (0.80, 0.81) 0.78 (0.78, 0.79) 0.72 (0.71, 0.74)
Expert-specific reliability 0.79 (0.79, 0.80) 0.81 (0.80, 0.81) 0.80 (0.80, 0.82)

Hierarchical thresholds
Reliability= 1 0.84 (0.84, 0.85) 0.81 (0.81, 0.82) 0.75 (0.74, 0.76)
Expert-specific reliability 0.83 (0.83, 0.84) 0.84 (0.84, 0.85) 0.85 (0.83, 0.85)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 14: Results from analyses of simulated data with intercept variance ⇠ N(0, 1) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.63 (0.62, 0.63) 0.61 (0.61, 0.61) 0.58 (0.56, 0.59)

No DIF
Reliability= 1 0.63 (0.63, 0.63) 0.61 (0.61, 0.62) 0.58 (0.57, 0.60)
Expert-specific reliability 0.64 (0.62 0.64) 0.62 (0.61, 0.63⇤) 0.70 (0.69, 0.70)

Hierarchical intercepts
Reliability= 1 0.77 (0.76, 0.77) 0.74 (0.73, 0.74) 0.70 (0.68, 0.71)
Expert-specific reliability 0.76 (0.75, 0.76) 0.77 (0.76, 0.78) 0.78 (0.77, 0.79)

Hierarchical thresholds
Reliability= 1 0.71 (0.71, 0.71) 0.68 (0.68, 0.68) 0.65 (0.63, 0.66)
Expert-specific reliability 0.65 (0.65, 0.66) 0.67 (0.64, 0.69) 0.74 (0.73, 0.74)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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E.3 Kendall correlation coe�cient

Table 15: Results from analyses of simulated data with out DIF and di↵erent levels of
simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.74 (0.73, 0.74) 0.69 (0.69, 0.70) 0.63 (0.61, 0.63)

No DIF
Reliability= 1 0.74 (0.74, 0.74) 0.69 (0.69, 0.71) 0.64 (0.62, 0.64)
Expert-specific reliability 0.71 (0.71, 0.71) 0.71 (0.71, 0.72) 0.71 (0.70, 0.71)

Hierarchical intercepts
Reliability= 1 0.64 (0.64, 0.65) 0.60 (0.59, 0.61) 0.55 (0.54, 0.57)
Expert-specific reliability 0.62 (0.61, 0.62) 0.63 (0.62, 0.64) 0.64 (0.62, 0.65)

Hierarchical intercepts
Reliability= 1 0.72 (0.72, 0.72) 0.67 (0.66, 0.68) 0.61 (0.59, 0.61)
Expert-specific reliability 0.69 (0.69, 0.70) 0.70 (0.70, 0.70) 0.70 (0.69, 0.70)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 16: Results from analyses of simulated data with threshold variance ⇠ N(0, 0.25) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.72 (0.71, 0.72) 0.69 (0.67 0.70) 0.62 (0.61, 0.62)

No DIF
Reliability= 1 0.72 (0.71, 0.72) 0.69 (0.67, 0.70) 0.63 (0.62, 0.63)
Expert-specific reliability 0.69 (0.68, 0.69) 0.71 (0.69, 0.71) 0.69 (0.69, 0.70)

Hierarchical intercepts
Reliability= 1 0.62 (0.62, 0.63) 0.60 (0.59, 0.61) 0.54 (0.54, 0.57)
Expert-specific reliability 0.60 (0.60, 0.61) 0.62 (0.61, 0.63) 0.63 (0.62, 0.63)

Hierarchical thresholds
Reliability= 1 0.70 (0.70, 0.71) 0.67 (0.66, 0.68) 0.61 (0.60, 0.61)
Expert-specific reliability 0.68 (0.68, 0.68) 0.70 (0.68, 0.70) 0.69 (0.69, 0.69)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 17: Results from analyses of simulated data with threshold variance ⇠ N(0, 1) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.62 (0.60, 0.63) 0.61 (0.58, 0.61) 0.55 (0.53, 0.56)

No DIF
Reliability= 1 0.62 (0.60, 0.62) 0.60 (0.58, 0.60) 0.55 (0.53, 0.56)
Expert-specific reliability 0.58 (0.57, 0.59) 0.60 (0.59, 0.60) 0.59 (0.58, 0.61)

Hierarchical intercepts
Reliability= 1 0.61 (0.60, 0.61) 0.58 (0.57, 0.59) 0.53 (0.52, 0.55)
Expert-specific reliability 0.56 (0.56, 0.57) 0.59 (0.58, 0.60) 0.59 (0.59, 0.60)

Hierarchical thresholds
Reliability= 1 0.65 (0.64, 0.65) 0.63 (0.61, 0.64) 0.57 (0.56, 0.58)
Expert-specific reliability 0.61 (0.61, 0.62) 0.63 (0.63, 0.64) 0.64 (0.63, 0.65)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 18: Results from analyses of simulated data with truncated threshold variance ⇠
N(0, 0.25) and di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.71 (0.70, 0.71) 0.67 (0.67, 0.68) 0.61 (0.59, 0.62)

No DIF
Reliability= 1 0.71 (0.70, 0.71) 0.67 (0.67, 0.68) 0.62 (0.60, 0.62)
Expert-specific reliability 0.68 (0.68, 0.69) 0.68 (0.68, 0.69) 0.68 (0.68, 0.69)

Hierarchical intercepts
Reliability= 1 0.62 (0.62, 0.63) 0.60 (0.58, 0.60) 0.56 (0.53, 0.56)
Expert-specific reliability 0.60 (0.60, 0.61) 0.62 (0.60, 0.62) 0.63 (0.61, 0.64)

Hierarchical thresholds
Reliability= 1 0.70 (0.69, 0.70) 0.66 (0.65, 0.66) 0.61 (0.58, 0.61)
Expert-specific reliability 0.68 (0.67, 0.68) 0.68 (0.68, 0.69) 0.69 (0.68, 0.69)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 19: Results from analyses of simulated data with truncated threshold variance ⇠
N(0, 1) and di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.50 (0.48, 0.53) 0.52 (0.47, 0.53) 0.45 (0.43, 0.49)

No DIF
Reliability= 1 0.50 (0.48, 0.53) 0.48 (0.47, 0.52) 0.45 (0.43, 0.50)
Expert-specific reliability 0.50 (0.48*, 0.53) 0.50 (0.46, 0.51) 0.47 (0.45, 0.52)

Hierarchical intercepts
Reliability= 1 0.60 (0.58, 0.61) 0.57 (0.57, 0.59) 0.53 (0.51, 0.55)
Expert-specific reliability 0.56 (0.55, 0.58) 0.58 (0.57, 0.60) 0.59 (0.59, 0.62)

Hierarchical thresholds
Reliability= 1 0.57 (0.56, 0.60) 0.55 (0.54, 0.58) 0.55 (0.51, 0.57)
Expert-specific reliability 0.53 (0.53, 0.55) 0.55 (0.54, 0.55) 0.57 (0.56, 0.58)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 20: Results from analyses of simulated data with intercept variance ⇠ N(0, 0.5) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.63 (0.63, 0.64) 0.60 (0.60, 0.62) 0.55 (0.53, 0.56)

No DIF
Reliability= 1 0.64 (0.63, 0.64) 0.61 (0.60, 0.62) 0.56 (0.54, 0.57)
Expert-specific reliability 0.63 (0.59, 0.63) 0.64 (0.64, 0.64) 0.62 (0.61, 0.63)

Hierarchical intercepts
Reliability= 1 0.61 (0.61, 0.62) 0.59 (0.59, 0.60) 0.53 (0.52, 0.55)
Expert-specific reliability 0.60 (0.60, 0.61) 0.62 (0.61, 0.62) 0.61 (0.61, 0.63)

Hierarchical thresholds
Reliability= 1 0.65 (0.65, 0.66) 0.63 (0.62, 0.63) 0.57 (0.56, 0.58)
Expert-specific reliability 0.64 (0.63, 0.64) 0.66 (0.66, 0.66) 0.66 (0.65, 0.67)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 21: Results from analyses of simulated data with intercept variance ⇠ N(0, 1) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
Average 0.45 (0.44, 0.45) 0.43 (0.43, 0.43) 0.41 (0.40, 0.42)

No DIF
Reliability= 1 0.45 (0.45, 0.45) 0.43 (0.43, 0.44) 0.41 (0.40, 0.42)
Expert-specific reliability 0.49 (0.47, 0.50) 0.48 (0.46, 0.48*) 0.53 (0.52, 0.54)

Hierarchical intercepts
Reliability= 1 0.57 (0.57, 0.58) 0.55 (0.54, 0.55) 0.52 (0.49, 0.52)
Expert-specific reliability 0.57 (0.56, 0.57) 0.57 (0.56, 0.58) 0.59 (0.57, 0.59)

Hierarchical thresholds
Reliability= 1 0.52 (0.51, 0.52) 0.49 (0.49, 0.50) 0.47 (0.45, 0.48)
Expert-specific reliability 0.49 (0.48, 0.49) 0.49 (0.47, 0.50) 0.55 (0.55, 0.56)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

E.4 95 percent HPD intervals

Table 22: Results from analyses of simulated data without DIF and di↵erent levels of simu-
lated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
No DIF

Reliability= 1 0.95 (0.95, 0.96) 0.92 (0.90, 0.92) 0.84 (0.83, 0.85)
Expert-specific reliability 0.90 (0.90, 0.91) 0.92 (0.91, 0.92) 0.93 (0.93, 0.95)

Hierarchical intercepts
Reliability= 1 0.88 (0.88, 0.89) 0.85 (0.84, 0.86) 0.81 (0.80, 0.83)
Expert-specific reliability 0.87 (0.86, 0.88) 0.88 (0.88, 0.88) 0.91 (0.90, 0.92)

Hierarchical intercepts
Reliability= 1 0.94 (0.94, 0.94) 0.90 (0.89, 0.91) 0.84 (0.83, 0.85)
Expert-specific reliability 0.90 (0.89, 0.90) 0.91 (0.91, 0.91) 0.93 (0.92, 0.94)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 23: Results from analyses of simulated data with threshold variance ⇠ N(0, 0.25) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
No DIF

Reliability= 1 0.94 (0.93, 0.94) 0.90 (0.88, 0.92) 0.83 (0.84, 0.83)
Expert-specific reliability 0.89 (0.88, 0.89) 0.91 (0.90, 0.92) 0.93 (0.92, 0.93)

Hierarchical intercepts
Reliability= 1 0.87 (0.87, 0.88) 0.86 (0.84, 0.86) 0.80 (0.79, 0.82)
Expert-specific reliability 0.86 (0.85, 0.86) 0.88 (0.87, 0.89) 0.91 (0.90, 0.91)

Hierarchical thresholds
Reliability= 1 0.93 (0.93, 0.94) 0.90 (0.89, 0.91) 0.84 (0.83, 0.84)
Expert-specific reliability 0.89 (0.89, 0.89) 0.92 (0.91, 0.92) 0.93 (0.93, 0.93)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 24: Results from analyses of simulated data with threshold variance ⇠ N(0, 1) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
No DIF

Reliability= 1 0.81 (0.80, 0.82) 0.80 (0.79, 0.80) 0.76 (0.75, 0.77)
Expert-specific reliability 0.78 (0.77, 0.79) 0.81 (0.80, 0.82) 0.84 (0.83, 0.86)

Hierarchical intercepts
Reliability= 1 0.84 (0.83, 0.84) 0.82 (0.81, 0.82) 0.78 (0.77, 0.79)
Expert-specific reliability 0.82 (0.81, 0.83) 0.84 (0.84, 0.85) 0.87 (0.85, 0.87)

Hierarchical thresholds
Reliability= 1 0.87 (0.87, 0.87) 0.84 (0.84, 0.86) 0.79 (0.79, 0.81)
Expert-specific reliability 0.85 (0.85, 0.85) 0.86 (0.86, 0.87) 0.89 (0.88, 0.90)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 25: Results from analyses of simulated data with truncated threshold variance ⇠
N(0, 0.25) and di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
No DIF

Reliability= 1 0.93 (0.93, 0.93) 0.89 (0.88, 0.89) 0.84 (0.82, 0.84)
Expert-specific reliability 0.88 (0.88, 0.89) 0.89 (0.89, 0.90) 0.93 (0.93, 0.93)

Hierarchical intercepts
Reliability= 1 0.87 (0.87, 0.88) 0.85 (0.84, 0.85) 0.83 (0.79, 0.83)
Expert-specific reliability 0.86 (0.85, 0.86) 0.88 (0.88, 0.88) 0.91 (0.90, 0.92)

Hierarchical thresholds
Reliability= 1 0.93 (0.92, 0.94) 0.89 (0.88, 0.89) 0.84 (0.83, 0.84)
Expert-specific reliability 0.89 (0.88, 0.90) 0.90 (0.89, 0.91) 0.93 (0.93, 0.93)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 26: Results from analyses of simulated data with truncated threshold variance ⇠
N(0, 1) and di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
No DIF

Reliability= 1 0.72 (0.71, 0.76) 0.71 (0.70, 0.77) 0.74 (0.68, 0.79)
Expert-specific reliability 0.67⇤ (0.53, 0.69) 0.68 (0.62, 0.70) 0.76 (0.70, 0.82⇤)

Hierarchical intercepts
Reliability= 1 0.86 (0.85, 0.87) 0.83 (0.83, 0.85) 0.79 (0.72, 0.82)
Expert-specific reliability 0.86 (0.84, 0.88) 0.88 (0.86, 0.89) 0.89 (0.85, 0.90)

Hierarchical thresholds
Reliability= 1 0.81 (0.80, 0.85) 0.80 (0.79, 0.83) 0.76 (0.75, 0.79)
Expert-specific reliability 0.76 (0.71, 0.79) 0.80 (0.77, 0.81) 0.85 (0.83, 0.85)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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Table 27: Results from analyses of simulated data with intercept variance ⇠ N(0, 0.5) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
No DIF

Reliability= 1 0.86 (0.85, 0.86) 0.83 (0.83, 0.84) 0.78 (0.78, 0.80)
Expert-specific reliability 0.81 (0.78, 0.88⇤) 0.72 (0.70, 0.73) 0.86 (0.86, 0.89)

Hierarchical intercepts
Reliability= 1 0.88 (0.87, 0.88) 0.84 (0.85, 0.86) 0.80 (0.79, 0.82)
Expert-specific reliability 0.87 (0.86, 0.87) 0.88 (0.87, 0.88) 0.90 (0.89, 0.92)

Hierarchical thresholds
Reliability= 1 0.89 (0.89, 0.89) 0.86 (0.86, 0.86) 0.80 (0.80, 0.82)
Expert-specific reliability 0.87 (0.86, 0.87) 0.78 (0.77, 0.79) 0.91 (0.90, 0.92)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.

Table 28: Results from analyses of simulated data with intercept variance ⇠ N(0, 1) and
di↵erent levels of simulated reliability

Reliability= 1 Reliability⇠ N(1, 0.5) Reliability⇠ N(1, 1)
No DIF

Reliability= 1 0.70 (0.69, 0.71) 0.68 (0.68, 0.70) 0.68 (0.68, 0.68)
Expert-specific reliability 0.48 (0.47, 0.53) 0.52 (0.48, 0.89⇤) 0.54 (0.53, 0.55)

Hierarchical intercepts
Reliability= 1 0.87 (0.86, 0.87) 0.83 (0.83, 0.85) 0.82 (0.79, 0.82)
Expert-specific reliability 0.89 (0.88, 0.89) 0.89 (0.88, 0.89) 0.86 (0.84, 0.86)

Hierarchical thresholds
Reliability= 1 0.78 (0.78, 0.78) 0.76 (0.76, 0.76) 0.74 (0.74, 0.75)
Expert-specific reliability 0.61 (0.55, 0.88) 0.75 (0.63, 0.83) 0.60 (0.59, 0.61)

⇤: Represents models that did not converge after 10,000 iterations with eight chains. Bold
text represents model with highest correlation.
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